, Volume 14, Issue 2, pp 485–492 | Cite as

Gold Nanowires-Based Hyperbolic Metamaterial Multiband Absorber Operating in the Visible and Near-Infrared Regimes

  • M. A. Baqir
  • P. K. ChoudhuryEmail author
  • M. J. Mughal


Spectral feature of gold nanowires-based hyperbolic metamaterial (NWHMM) absorber was investigated. The absorber has NWHMM surface as the top layer, which is composed of periodically arranged arrays of subwavelength-sized gold (Au) nanowires (of circular cross-section) immersed in silicon dioxide (SiO2) dielectric medium. Such NWHMM surface is over a planar dielectric SiO2 substrate, backed by a perfect (bottom) reflector comprised of nano-sized bulk layer of silver (Ag). Considering the incidence of electromagnetic waves (in the range of 400–1400 nm wavelength) on the top NWHMM surface, the absorption spectrum of the proposed structure was analyzed for different thickness values (of surface), incidence angles, and also Au nanowire radius. The presence of multiple absorption peaks was noticed, which comes into existence due to different resonance conditions. The absorption features can be tuned by altering the operational conditions.


Metamaterials Metamaterial absorber Hyperbolic metamaterials Complex mediums 



The authors are thankful to the anonymous reviewer for comments, which helped to improve the content.

Funding Information

The project is partially supported by the internal grant no. GGP-2017-014 provided by the UKM; one of the authors (PKC) gratefully acknowledges this.


  1. 1.
    Poddubny AN, Belov PA, Kivshar YS (2011) Spontaneous radiation of finite-size dipole emitter in hyperbolic metamaterial. Phys Rev A 84:Article 023807Google Scholar
  2. 2.
    Poddubny A, Irosh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nat Photon 7:948–957CrossRefGoogle Scholar
  3. 3.
    Rhee JY, Yoo YJ, Kim KW, Kim YJ, Lee YP (2014) Metamaterials based perfect absorbers. J Electromagn Waves Appl 28:1541–1580CrossRefGoogle Scholar
  4. 4.
    Choudhury PK, Abou El-Nasr M (2015) Complex metamaterial mediums and THz applications. J Electromagn Waves Appl 29:2405–2407CrossRefGoogle Scholar
  5. 5.
    Ghasemi M, Baqir MA, Choudhury PK (2016) On the metasurface-based comb filters. IEEE Photon Technol Lett 28:1100–1103CrossRefGoogle Scholar
  6. 6.
    Ghasemi M, Choudhury PK (2016) Metamaterial absorber comprised of butt-facing U-shaped nanoengineered gold metasurface. Energies 9:451-1–451-14CrossRefGoogle Scholar
  7. 7.
    Yang Y, Jing L, Shen L, Wang Z, Zheng B, Wang H, Li E, Shen NH, Koschny T, Soukoulis CM, Chen H (2017) Hyperbolic spoof plasmonic metasurfaces. Nat NPG Asia Mater 9:e428.1–e428.7Google Scholar
  8. 8.
    Well B, Kudyshev ZA, Litchinitser N, Podolskiy VA (2017) Nonlocal effects in transition hyperbolic metamaterials. ACS Photon 4:2470–2478CrossRefGoogle Scholar
  9. 9.
    Ghasemi M, Choudhury PK, Baqir MA, Mohamed MA, Zain ARM, Majlis BY (2017) Metamaterial absorber comprised of chromium-gold nanorod-based columnar thin films. J Nanophoton 11:043505-1–043505-10CrossRefGoogle Scholar
  10. 10.
    Wegener M (2013) Metamaterial beyond optics. Science 342:939–940CrossRefGoogle Scholar
  11. 11.
    Lu D, Khan JJ, Fullerton EE, Liu Z (2014) Enhancing spontaneous emission rate of molecules using nanopatterned multilayered hyperbolic metamaterials. Nat Nantechnol 9:48–53CrossRefGoogle Scholar
  12. 12.
    Vasilantonakis N, Wurtz GA, Podolskiy VA, Zayats AV (2015) Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement. Opt Express 23:14329–14343CrossRefGoogle Scholar
  13. 13.
    Ghasemi M, Choudhury PK (2016) Nanostructured concentric gold ring resonator-based metasurface filter device. Optik 127:9932–9936CrossRefGoogle Scholar
  14. 14.
    Baqir MA, Choudhury PK (2017) Hyperbolic metamaterial-based UV absorber. IEEE Photon Technol Lett 29:1548–1551CrossRefGoogle Scholar
  15. 15.
    Abbas F, Faryad MA (2017) A highly sensitive multiplasmonic sensor using hyperbolic chiral sculptured thin films. J Appl Phys 122:Article 173104Google Scholar
  16. 16.
    Moghaddas S, Ghasemi M, Choudhury PK, Majlis BY (2018) Engineered metasurface of gold funnels for terahertz wave filtering. Plasmonics.
  17. 17.
    Tao H, Kadlec EA, Strikwerda AC, Fan K, Padilla WJ, Averitt RD, Shaner EA, Zhang X (2011) Microwave and terahertz wave sensing with metamaterials. Opt Express 19:21620–21626CrossRefGoogle Scholar
  18. 18.
    Baqir MA, Ghasemi M, Choudhury PK, Majlis BY (2015) Design and analysis of nanostructured subwavelength metamaterial absorber operating in the UV and visible spectral range. J Electromagn Waves Appl 29:2408–2419CrossRefGoogle Scholar
  19. 19.
    Long C, Yin S, Wang W, Li W, Zhu J, Guan J (2016) Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode. Sci Rep 6:21431CrossRefGoogle Scholar
  20. 20.
    Zhou J, Kaplan AF, Chen L, Guo LJ (2014) Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array. ACS Photon 1:618–624CrossRefGoogle Scholar
  21. 21.
    Ning R, Liu S, Zhang H, Bian B, Kong X (2014) A wide-angle broadband absorber in graphene-based hyperbolic metamaterials. Sci Rep 6:31225Google Scholar
  22. 22.
    Desouky M, Mahmoud AM, Swillam MA (2018) Silicon based mid-IR super absorber using hyperbolic metamaterial. Sci Rep 8:2036CrossRefGoogle Scholar
  23. 23.
    Yermakov OY, Ovcharenko AI, Bogdanov AA, Iorsh IV, Bliokh KY, Kivshar YS (2016) Spin control of light with hyperbolic metasurfaces. Phys Rev B 94:Article 075446Google Scholar
  24. 24.
    Li T, Khurgin JB (2016) Hyperbolic metamaterials: beyond the effective medium theory. Optica 3:1388–1396CrossRefGoogle Scholar
  25. 25.
    Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283CrossRefGoogle Scholar
  26. 26.
    Liu Y, Bartal G, Zhang X (2008) All-angle negative refraction and imaging in a bulk medium made of metallic nanowire in the visibleregion. Opt Express 16:15439–15448CrossRefGoogle Scholar
  27. 27.
    Madani A, Entezar SR, Namdar A, Tajalli H (2012) Influence of the orientation of optical axis on the transmission properties of one dimensional photonic crystals containing uniaxial indefinite metamaterial. J Opt Soc Am B 10:2910–2914CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringCOMSATS University IslamabadSahiwalPakistan
  2. 2.Institute of Microengineering and NanoelectronicsUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Department of Electrical EngineeringCOMSATS University IslamabadIslamabadPakistan

Personalised recommendations