, Volume 14, Issue 2, pp 457–463 | Cite as

SPR Label-Free Biosensor with Oxide-Metal-Oxide-Coated D-Typed Optical Fiber: a Theoretical Study

  • Bobo Du
  • Yuan Yang
  • Yang Zhang
  • Dexing YangEmail author


In this article, a surface plasmon resonance (SPR) biosensor based on D-typed optical fiber coated by Al2O3/Ag/Al2O3 film is investigated numerically. Resonance in near infrared with an optimized architecture is achieved. Refractive index sensitivity of 6558 nm/RIU (refractive index unit) and detection limit of 1.5 × 10−6 RIU, corresponding to 0.4357 nm/μM and detection limit of 23 nM in BSA (bovine serum albumin) concentration sensing, are obtained. The analysis of the performance of the sensor in gaseous sensing indicates that this proposed SPR sensor is much suitable for label-free biosensing in aqueous media.


D-typed optical fiber Surface plasmon resonance Biological sensors Multilayer film 


Funding Information

This work is supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant No.CX201818).


  1. 1.
    Schasfoort RB (2017) Handbook of surface plasmon resonance. Royal Society of ChemistryGoogle Scholar
  2. 2.
    Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304CrossRefGoogle Scholar
  3. 3.
    Jorgenson R, Yee S (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12:213–220CrossRefGoogle Scholar
  4. 4.
    Muehlschlegel P, Eisler H-J, Martin OJ et al (2005) Resonant optical antennas. Science 308:1607–1609CrossRefGoogle Scholar
  5. 5.
    Shan X, Patel U, Wang S, Iglesias R, Tao N (2010) Imaging local electrochemical current via surface plasmon resonance. Science 327:1363–1366CrossRefGoogle Scholar
  6. 6.
    Maley AM, Lu GJ, Shapiro MG, Corn RM (2017) Characterizing single polymeric and protein nanoparticles with surface plasmon resonance imaging measurements. ACS Nano 11:7447–7456CrossRefGoogle Scholar
  7. 7.
    Dıez A, Andres M, Cruz J (2001) In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers. Sensors Actuators B Chem 73:95–99CrossRefGoogle Scholar
  8. 8.
    Gangwar RK, Singh VK (2017) Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor. Plasmonics 12:1367–1372CrossRefGoogle Scholar
  9. 9.
    Chiu M-H, Wang S-F, Chang R-S (2005) D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry. Opt Lett 30:233–235CrossRefGoogle Scholar
  10. 10.
    Shi S, Wang L, Su R et al (2015) Apolydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays. Biosens.Bioelectron 74:454–460CrossRefGoogle Scholar
  11. 11.
    Sepúlveda B, Angelomé PC, Lechuga LM et al (2009) LSPR-based nanobiosensors. Nano Today 4:244–251CrossRefGoogle Scholar
  12. 12.
    Baldini F, Brenci M, Chiavaioli F, Giannetti A, Trono C (2012) Optical fibre gratings as tools for chemical and biochemical sensing. Anal Bioanal Chem 402:109–116CrossRefGoogle Scholar
  13. 13.
    Caucheteur C, Voisin V, Albert J (2015) Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity. Opt Express 23:2918–2932CrossRefGoogle Scholar
  14. 14.
    Allsop T, Neal R, Rehman S, Webb DJ, Mapps D, Bennion I (2007) Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings. Appl Opt 46:5456–5460CrossRefGoogle Scholar
  15. 15.
    Huang T (2017) Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength. Plasmonics 12:583–588CrossRefGoogle Scholar
  16. 16.
    Rhodes C, Franzen S, Maria J-P, Losego M, Leonard DN, Laughlin B, Duscher G, Weibel S (2006) Surface plasmon resonance in conducting metal oxides. J Appl Phys 100:054905CrossRefGoogle Scholar
  17. 17.
    Liu X, Wang X, Zhou B et al (2013) Size-controlled synthesis of Cu2-xE (E= S, se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films. Adv. Funct. Mater 23:1256–1264CrossRefGoogle Scholar
  18. 18.
    Ghatak A, Thyagarajan K (1998) An introduction to fiber optics. Cambridge university pressGoogle Scholar
  19. 19.
    Barth J, Johnson R, Cardona M et al (1991) Handbook of optical constants of solids II. Academic Press, New YorkGoogle Scholar
  20. 20.
    Villatoro J, Monzón-Hernández D, Mejía E (2003) Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors. Appl Opt 42:2278–2283CrossRefGoogle Scholar
  21. 21.
    Wang S-F, Chiu M-H, Hsu J-C, Chang RS, Wang FT (2005) Theoretical analysis and experimental evaluation of D-type optical fiber sensor with a thin gold film. Opt Commun 253:283–289CrossRefGoogle Scholar
  22. 22.
    Mishra AK, Mishra SK, Verma RK (2016) Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing. J Phys Chem C 120:2893–2900CrossRefGoogle Scholar
  23. 23.
    Ball V, Ramsden JJ (1998) Buffer dependence of refractive index increments of protein solutions. Biopolymers 46:489–492CrossRefGoogle Scholar
  24. 24.
    Rezaei N, Yahaghi A (2014) A high sensitivity surface plasmon resonance D-shaped fiber sensor based on a waveguide-coupled bimetallic structure: modeling and optimization. IEEE Sensors J 14:3611–3615CrossRefGoogle Scholar
  25. 25.
    Patnaik A, Senthilnathan K, Jha R (2015) Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor. IEEE Photon Technol Lett 27:2437–2440CrossRefGoogle Scholar
  26. 26.
    An G, Li S, Cheng T et al. (2018) Ultra-stable D-shaped Optical Fiber Refractive Index Sensor with Graphene-Gold Deposited Platform. Plasmonics:1–9Google Scholar
  27. 27.
    Cennamo N, Zuppella P, Bacco D et al. (2016) SPR sensor platform based on a novel metal bilayer applied on D–shaped plastic optical fibers for refractive index measurements in the range 1.38–1.42. IEEE Sens. J 16:4822–4827Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations