Advertisement

Plasmonics

, Volume 14, Issue 2, pp 353–357 | Cite as

Effect of Graphene on the Sunlight Absorption Rate of Silicon Thin Film Solar Cells

  • Jian-Xiao Liu
  • Xun Xie
  • Peng Du
  • Yu-Jie Liu
  • Hong-Wei YangEmail author
Article
  • 82 Downloads

Abstract

The electromagnetic property of graphene is studied by finite-difference time-domain (FDTD) method. As the graphene has excellent electrical conductivity and high transparency, it has certain advantages as a transparent electrode for solar cells. This paper designs a three-layer film structure composed of graphene, silicon, and silicon dioxide (SiO2). Then, the effects of the chemical potential and the scattering rate of the graphene on the light absorption of the film are studied. The study found that the electromagnetic property of graphene is relatively stable, which is not easily influenced by the external environment. After changing its chemical potential, scattering rate, and other parameters, it is found that the film absorption rate is less affected unless the large range of chemical potential changes; it will lead to a decline in the absorption rate of light.

Keywords

Graphene FDTD Light absorption rate Film 

Notes

Funding Information

This work is supported by the excellent project of Nanjing Agricultural University (Grant No. JF17080123) and the College of Sciences of Nanjing Agricultural University (Grant No. CoS201410).

References

  1. 1.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294CrossRefGoogle Scholar
  2. 2.
    Suk JW, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, Swan AK, Goldberg BB, Ruoff RS (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924CrossRefGoogle Scholar
  3. 3.
    Bouzianas GD, Kantartzis NV, Tsiboukis TD (2012) Subcell dispersive finite-difference time-domain schemes for infinite graphene-based structures. IET Microwaves, Antennas & Propagation 6(4):377–386CrossRefGoogle Scholar
  4. 4.
    Di Xu, Cheng Deng, Hai Lin, Helin Yang (2013) A versatile material model for the FDTD simulation of graphene,” IEEE International Conference on Microwave Technology & Computational Electromagnetics, Qingdao, p 345–348Google Scholar
  5. 5.
    de Oliveira RMS, Rodrigues NRNM, Dmitriev V (2015) FDTD formulation for graphene modeling based on piecewise linear recursive convolution and thin material sheets techniques. IEEE Antennas and Wireless Propagation Letters 14:767–770CrossRefGoogle Scholar
  6. 6.
    Wang S-Y, Zhang T, Yin W-Y, Zhou L (2013) Interaction of electromagnetic waves with multilayer bi-anisotropic graphene structure. Radio Science Meeting. IEEE, Lake Buena Vista, p 53–53.  https://doi.org/10.1109/USNC-URSI.2013.6715359
  7. 7.
    Wang X-C, Zhao W-S, Hu J, Zhang T (2013) A novel tunable antenna at THz frequencies using graphene-based artificial magnetic conductor (AMC). Progress in Electromagnetics Research Letters 41:29–38CrossRefGoogle Scholar
  8. 8.
    Yang L, Li L, Chen L (2015) Electromagnetic characteristics of 1D grapheme photonic crystal by using SBC-FDTD method of oblique incidence in THz. Progress in Electromagnetics Research M 43:135–145CrossRefGoogle Scholar
  9. 9.
    Lixia Y, Lingling L, Ting Z, Lijuan S (2016) Terahertz electromagnetic characteristics of one-dimensional graphene-photonic crystal by FDTD method (in Chinese). Chinese Journal of Radio Science 31(2):262–268Google Scholar
  10. 10.
    Liu Y-J, Xie X, Xie L, Yang Z-K, Yang H-W (2016) Dual-band absorption characteristics of one-dimensional photonic crystal with graphene-based defect. Optik 127(9):3945–3948CrossRefGoogle Scholar
  11. 11.
    Guo-long L, Jing-ming Z, Li-hui W, Jin L, Li-jun H (2015) Antireflection coatings in graphene-based polymer solar cell (in Chinese). Advances in New and Renewable Energy 3(5):336–339Google Scholar
  12. 12.
    De-biao G, Yue-li W, Xiang-qin Z (2003) Shift operator method applied for dispersive medium in FDTD analysis (in Chinese). Chinese Journal of Radio Science 18(4):359–363Google Scholar
  13. 13.
    Yang H-W, Ru-Shan C, Yun Z (2006) SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma (in Chinese). Acta Phys Sin 55(7):3464–3469Google Scholar
  14. 14.
    Hong-wei Y, Hong Y, Ru-shan C, Yang Y (2007) SO-FDTD analysis of anisotropic magnetized plasma (in Chinese). Acta Phys Sin 56(3):1443–1446Google Scholar
  15. 15.
    Yang HW, Liu Y (2013) SO-FDTD analysis on the stealth effect of magnetized plasma with Epstein distribution. Optik 124(15):2037–2040CrossRefGoogle Scholar
  16. 16.
    Hong-wei Y, Ru-shan C, Yun Z (2006) SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma (in Chinese). Acta Phys Sin 55(7):3464–3469Google Scholar
  17. 17.
    Liu J-x, Zhang L-x, Zhang J-l, Yang Z-K, Yang H-W (2016) Anisotropic ferrite microstrip antenna simulation and analysis. Optik 127(8):4144–4149CrossRefGoogle Scholar
  18. 18.
    Yin X, Zhang H, Zhao Z-W, Sun SJ (2012) A high efficient SO-FDTD method for magnetized collisional plasma. Journal of Electromagnetic Waves and Applications 26(14–15):1911–1921CrossRefGoogle Scholar
  19. 19.
    Zhou F, Hao R, Jin X-F, Zhang X-M, Li E-P (2014) A graphene-enhanced fiber-optic phase modulator with large linear dynamic range. IEEE Photon Technol Lett 26(18):1867–1870CrossRefGoogle Scholar
  20. 20.
    Guo Y, Zhang T, Yin W-Y, Wang X-H (2017) Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications. IEEE Transactions on Terahertz Science and Technology 5(3):358–367CrossRefGoogle Scholar
  21. 21.
    Xie Yanan, Liu Zhikun, Geng Li, Pan Dengke, Song Pan,“Properties of graphene and antenna applications in microwave to THz,” Acta Opt Sin, 35, S116005–S116007, 2015Google Scholar
  22. 22.
    Rubin M (1985) Optical properties of soda lime silica glasses. Sol Energy Mater 12(4):275–288CrossRefGoogle Scholar
  23. 23.
    Green MA (2008) Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol Energy Mater Sol Cells 92(11):1305–1310CrossRefGoogle Scholar
  24. 24.
    Aksoy S (2007) An alternative algorithm for both narrowband and wideband Lorentzian dispersive materials modeling in the finite-difference time-domain method. IEEE Transactions on Microwave Theory and Techniques 55(4):703–708CrossRefGoogle Scholar
  25. 25.
    Koledintseva MY, Drewniak JL, Pommerenke DJ, Antonini G, Orlandi A, Rozanov KN (2005) Wide-band Lorentzian media in the FDTD algorithm. IEEE Trans Electromagn Compat 47(2):392–399CrossRefGoogle Scholar
  26. 26.
    Shibayama J, Sasaki N, Wakabayashi Y, Yamauchi J, Nakano H (2013) Frequency-dependent fundamental LOD-FDTD formulation for a multipole Debye model. IEEE Photon Technol Lett 25(10):965–968CrossRefGoogle Scholar
  27. 27.
    Zhu R-J, Wang J, Jin G-F (2005) Mie scattering calculation by FDTD employing a modified Debye model for gold material. Optik 116(9):419–422CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jian-Xiao Liu
    • 1
    • 2
  • Xun Xie
    • 2
  • Peng Du
    • 1
  • Yu-Jie Liu
    • 2
  • Hong-Wei Yang
    • 2
    Email author
  1. 1.College of Electronics and Information EngineeringHengshui UniversityHebeiPeople’s Republic of China
  2. 2.Department of Physics, College of ScienceNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations