, Volume 14, Issue 2, pp 347–352 | Cite as

Design of a Plasmonic Photocatalyst Structure Consisting of Metallic Nanogratings for Light-Trapping Enhancement

  • Mehdi Sedghi
  • Rahmatollah RahimiEmail author
  • Mahboubeh Rabbani


In this paper, a novel SPP-based photocatalytic system with high photocatalytic performance consisting metallic nanograting elements is proposed and simulated numerically with finite-differential time-domain (FDTD) method. Various nanograting metallic shapes, rectangular and trapezoidal, are studied. Results shows that the absorption significantly increases for the trapezoidal grating-based structure compared to its flat and rectangular grating elements. In addition, the effect of the incident angle of the sun light is considered to achieve an optimum design. It is found that in all angles of the incidence, trapezoidal grating (TG) has larger visible photocatalytic activities than the flat and rectangular cases. The best configuration was realized for the trapezoidal grating-based structure at 60° of inclination when the height of the grating elements is 43 nm. The photocatalytic activity of the metallic grating structure was attributed to scattering of the incident light and return to the host TiO2 medium and the surface plasmon excitation of the metallic elements.


Titanium dioxide Photocatalytic FDTD PML 


  1. 1.
    Burda C et al (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3(8):1049–1051CrossRefGoogle Scholar
  2. 2.
    Lusvardi G et al (2017) Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants. Materials 10(10):1208CrossRefGoogle Scholar
  3. 3.
    Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52(10):3581–3599CrossRefGoogle Scholar
  4. 4.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRefGoogle Scholar
  5. 5.
    Shao Y et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036CrossRefGoogle Scholar
  6. 6.
    Shen X et al (2008) Enhanced photocatalytic degradation and selective removal of nitrophenols by using surface molecular imprinted titania. Environ Sci Technol 42(5):1687–1692CrossRefGoogle Scholar
  7. 7.
    Linsebigler AL, Guangquan L, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758CrossRefGoogle Scholar
  8. 8.
    Pandikumar A, Ramaraj R (2013) Photocatalytic reduction of hexavalent chromium at gold nanoparticles modified titania nanotubes. Mater Chem Phys 141(2–3):629–635CrossRefGoogle Scholar
  9. 9.
    Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590):2243–2245CrossRefGoogle Scholar
  10. 10.
    Zhao J, Chen C, Ma W (2005) Photocatalytic degradation of organic pollutants under visible light irradiation. Top Catal 35(3–4):269–278CrossRefGoogle Scholar
  11. 11.
    Chen C, Ma W, Zhao J (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39(11):4206–4219CrossRefGoogle Scholar
  12. 12.
    Mehta M et al (2016) Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory. J Mater Chem A 4(7):2670–2681CrossRefGoogle Scholar
  13. 13.
    Busiakiewicz A et al (2010) The new high-temperature surface structure on reduced TiO2 (001). J Phys Condens Matter 22(39):395501CrossRefGoogle Scholar
  14. 14.
    Brongersma ML, Halas NJ, Nordlander P (2015) Plasmon-induced hot carrier science and technology. Nat Nanotechnol 10(1):25–34CrossRefGoogle Scholar
  15. 15.
    Primo A, Corma A, García H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13(3):886–910CrossRefGoogle Scholar
  16. 16.
    Pincella F, Isozaki K, Miki K (2014) A visible light-driven plasmonic photocatalyst. Light: Sci Appl 3(1):e133CrossRefGoogle Scholar
  17. 17.
    Kowalska E, Rau S, Ohtani B (2012) Plasmonic titania photocatalysts active under UV and visible-light irradiation: influence of gold amount, size, and shape. J Nanotechnol 2012:1–11CrossRefGoogle Scholar
  18. 18.
    Yang B et al (2016) Gold-plasmon enhanced photocatalytic performance of anatase titania nanotubes under visible-light irradiation. Mater Res Bull 74:278–283CrossRefGoogle Scholar
  19. 19.
    Tran VV et al (2017) Sub-10 nm, high density titania nanoforests–gold nanoparticles composite for efficient sunlight-driven photocatalysis. Jpn J Appl Phys 56(9):095001CrossRefGoogle Scholar
  20. 20.
    Li XZ, Li FB (2001) Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ Sci Technol 35(11):2381–2387CrossRefGoogle Scholar
  21. 21.
    Luo S et al (2011) Simultaneous detoxification of hexavalent chromium and acid orange 7 by a novel Au/TiO2 heterojunction composite nanotube arrays. Sep Purif Technol 79(1):85–91CrossRefGoogle Scholar
  22. 22.
    Awazu K et al (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130(5):1676–1680CrossRefGoogle Scholar
  23. 23.
    Kuzma, Anton, et al (2013) Surface plasmon resonance of gold and silver nanoparticle monolayers: effect of coupling and surface oxides, photonics north 2013. Vol. 8915. Int Soc Opt PhotonicsGoogle Scholar
  24. 24.
    Wu F et al (2013) Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 8(2):501–508CrossRefGoogle Scholar
  25. 25.
    Xu J et al (2012) Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island. Nanoscale Res Lett 7(1):239CrossRefGoogle Scholar
  26. 26.
    Janczarek M et al (2016) Silver-and copper-modified decahedral anatase titania particles as visible light-responsive plasmonic photocatalyst. J Photonics Energy 7(1):012008CrossRefGoogle Scholar
  27. 27.
    Palik ED (1997) Gallium arsenide (GaAs), handbook of optical constants of solids. 429–443Google Scholar
  28. 28.
    Hosaka N et al (1997) Optical properties of single-crystal anatase TiO2. J Phys Soc Jpn 66(3):877–880CrossRefGoogle Scholar
  29. 29.
    Shahamat Y, Vahedi M (2017) Plasmon-induced transparency in a rectangle cavity and an H-shaped structure for sensing and switching applications. J Nanophotonics 11(4):046012CrossRefGoogle Scholar
  30. 30.
    Leem JW et al (2015) Strong photocurrent enhancements in plasmonic organic photovoltaics by biomimetic nanoarchitectures with efficient light harvesting. ACS Appl Mater Interfaces 7(12):6706–6715CrossRefGoogle Scholar
  31. 31.
    Shahamat Y, Vahedi M (2017) Pump-tuned plasmon-induced transparency for sensing and switching applications. Opt Commun 401:40–45CrossRefGoogle Scholar
  32. 32.
    Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127(20):7632–7637CrossRefGoogle Scholar
  33. 33.
    Le KQ (2014) Enhanced plasmonic Brewster transmission through metascreens by tapered slits. J Appl Phys 115(3):033110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mehdi Sedghi
    • 1
  • Rahmatollah Rahimi
    • 1
    Email author
  • Mahboubeh Rabbani
    • 1
  1. 1.Department of ChemistryIran University of Science and TechnologyTehranIran

Personalised recommendations