Advertisement

Plasmonics

, Volume 14, Issue 2, pp 335–346 | Cite as

Improving Solar Cells’ Light Trapping by the Low Loss Interface Photonic Crystals

  • Ke Chen
  • Yuanyuan Wang
  • Haisuo Wang
  • Rui Wu
  • Xiaopeng Yu
  • Hongyang Shi
  • Hongmei ZhengEmail author
Article
  • 77 Downloads

Abstract

Improving the silicon layer’s optical absorption is a key research point for crystalline silicon based thin film solar cells. Light trapping is a method widely adopted to achieve this research purpose. In this paper, we propose low loss interface photonic crystals layer (IPC), which is sandwiched between the crystalline silicon layer and the cover layer. The low loss interface photonic crystals layer could boost the light trapping efficiency significantly. The mechanism is that the smaller refraction index difference between silicon layer and the low loss interface photonic crystals layer could reduce the light’s interface reflection. Taking advantage of the coupling calculation by optical and electrical simulations, solar cell’s absorption efficiency and electrical performance parameters are obtained. Compared with optimized reference group, the maximum output power of the proposed solar cell could be improved by 6.44%. The result indicates that the proposed low loss interface photonic crystals layer is applicable for light’s trapping in crystalline silicon thin film solar cells.

Keywords

Interface reflection Light trapping Photonic crystals Thin film solar cells 

Notes

Funding information

The authors acknowledge support by the projects National Natural Science Foundation of China under Grant No. 51435003.

References

  1. 1.
    Yablonovitch E, Cody GD (1982) Intensity enhancement in textured optical sheets for solar-cells. IEEE Trans Electron Devices 2:300–305.  https://doi.org/10.1007/978-94-009-7898-0_76 CrossRefGoogle Scholar
  2. 2.
    Green MA (1982) Solar cells: operating principles, technology and system applications. Prentice-Hall, Upple Saddle RiverGoogle Scholar
  3. 3.
    Green MA (1995) Silicon solar cells: advanced principle and practise. University of New South Wales, SydneyGoogle Scholar
  4. 4.
    Deckman HW, Roxlo CB, Yablonovitch E (1983) Maximum statistical increase of optical absorption in textured semi-conductor films. Opt Lett 9:491–493.  https://doi.org/10.1364/Ol.8.000491 CrossRefGoogle Scholar
  5. 5.
    Polman A, Atwater HA (2012) Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater 3:174–177.  https://doi.org/10.1038/nmat3263 CrossRefGoogle Scholar
  6. 6.
    Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8(12):4391–4397.  https://doi.org/10.1021/nl8022548 CrossRefGoogle Scholar
  7. 7.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 10:865–865.  https://doi.org/10.1038/nmat2866 CrossRefGoogle Scholar
  8. 8.
    Min C, Li J, Veronis G, Lee JY, Fan S, Peumans P (2010) Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Appl Phys Lett 96(13):133302.  https://doi.org/10.1063/1.3377791 CrossRefGoogle Scholar
  9. 9.
    Shang A, Li X (2015) Carrier depletion and electrical optimization of gallium arsenide plasmonic solar cell with a rear metallic grating. Appl Phys Lett 106(5):051107.  https://doi.org/10.1063/1.4907545 CrossRefGoogle Scholar
  10. 10.
    Paetzold UW, Haase C, Stiebig H (2009) Localized Plasmonic effects at metal back contacts of thin-film silicon solar cells. Eur Photovoltaic Sol Energy Conf 24:2779–2783.  https://doi.org/10.4229/24thEUPVSEC2009-3BV.4.10 Google Scholar
  11. 11.
    Paetzold UW, Hallermann F, Pieters BE, Rau U, Carius R, von Plessen G (2010) Localized plasmonic losses at metal back contacts of thin-film silicon solar cells. Proc SPIE 1:772517–772519.  https://doi.org/10.1117/12.854430 CrossRefGoogle Scholar
  12. 12.
    Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271.  https://doi.org/10.1364/AO.37.005271 CrossRefGoogle Scholar
  13. 13.
    Green MA (2008) Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol Energy Mater Sol Cells 92(11):1305–1310.  https://doi.org/10.1016/j.solmat.2008.06.009 CrossRefGoogle Scholar
  14. 14.
    Lin A, Zhong YK, Fu SM (2013) The effect of mode excitations on the absorption enhancement for silicon thin film solar cells. J Appl Phys 114(23):233104.  https://doi.org/10.1063/1.4851817 CrossRefGoogle Scholar
  15. 15.
    Awal MA, Ahmed Z, Talukder MA (2015) An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry. J Appl Phys 6:83–91.  https://doi.org/10.1063/1.4907873 Google Scholar
  16. 16.
    Zhang X, Knize RJ, Lu Y (2013) Enhanced light absorption in thin-film tandem solar cells using a bottom metallic nanograting. Appl Phys A Mater Sci Process 115(2):509–515.  https://doi.org/10.1007/s00339-013-8075-7 CrossRefGoogle Scholar
  17. 17.
    Wang W, Wu S, Reinhardt K, Lu Y, Chen S (2010) Broadband light absorption enhancement in thin-film silicon solar cells. Nano Lett 10(6):2012–2018.  https://doi.org/10.1021/nl904057p CrossRefGoogle Scholar
  18. 18.
    Chen K, Wang Y, Zheng H, Wu R, Yu X (2017) Optical waveguide modes’ splitting by bi-layer silver gratings in thin film solar cells. Plasmonics 5:1581–1587.  https://doi.org/10.1007/s1146 CrossRefGoogle Scholar
  19. 19.
    Wang KX, Yu Z, Liu V, Cui Y, Fan S (2012) Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett 12(3):1616–1619.  https://doi.org/10.1021/nl204550q CrossRefGoogle Scholar
  20. 20.
    Brongersma ML, Cui Y, Fan S (2014) Light management for photovoltaics using high-index nanostructures. Nat Mater 5:451–460.  https://doi.org/10.1038/nmat3921 CrossRefGoogle Scholar
  21. 21.
    Born M, Wolf E (2003) Principles of optics, 7th. Cambridge University Press, LondonGoogle Scholar
  22. 22.
    Moitra P, Yang Y, Anderson Z, Kravchenko II, Briggs DP, Valentine J (2013) Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics 7(10):791–795.  https://doi.org/10.1038/nphoton.2013.214 CrossRefGoogle Scholar
  23. 23.
    Maas R, Parsons J, Engheta N, Polman A (2013) Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat Photonics 7(11):907–912.  https://doi.org/10.1038/nphoton.2013.256 CrossRefGoogle Scholar
  24. 24.
    Huang X, Lai Y, Hang ZH, Zheng H, Chan CT (2011) Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat Mater 8:582–586.  https://doi.org/10.1038/nmat3030 CrossRefGoogle Scholar
  25. 25.
    Xu Y, Chen H (2011) Total reflection and transmission by epsilon-near-zero metamaterials with defects. Appl Phys Lett 11:113501.  https://doi.org/10.1063/1.3565172 CrossRefGoogle Scholar
  26. 26.
    Zheng LY, Wu Y, Ni X, Chen ZG, Lu MH, Chen YF (2014) Acoustic cloaking by a near-zero-index phononic crystal. Appl Phys Lett 104(16):161904.  https://doi.org/10.1063/1.4873354 CrossRefGoogle Scholar
  27. 27.
    Li Y, Kita S, Muñoz P, Reshef O, Vulis DI, Yin M, Lončar M, Mazur E (2015) On-chip zero-index metamaterials. Nat Photonics 9(11):738–742.  https://doi.org/10.1038/nphoton.2015.198 CrossRefGoogle Scholar
  28. 28.
    Campione S, Albani M, Capolino F (2011) Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: loss compensation using gain [Invited]. Opt Mater Express 6:1077.  https://doi.org/10.1364/OME.1.001077 CrossRefGoogle Scholar
  29. 29.
    Yan W, Richards BS (2017) Potential of silicon phononic crystals for photovoltaic applications. IEEE J Photovoltaics 6:1503–1510.  https://doi.org/10.1109/JPHOTOV.2017.2735024 CrossRefGoogle Scholar
  30. 30.
    Sun G, Kirk AG (2007) On the relationship between Bloch modes and phase-related refractive index of photonic crystals. Opt Express 20:13149–13154.  https://doi.org/10.1364/OE.15.013149 CrossRefGoogle Scholar
  31. 31.
    Deceglie MG, Ferry VE, Alivisatos AP, Atwater HA (2012) Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett 6:2894–2900.  https://doi.org/10.1021/nl300483y CrossRefGoogle Scholar
  32. 32.
    Rand BP, Genoe J, Heremans P, Poortmans J (2013) Solar cells utilizing small molecular weight organic semiconductors. Prog Photovolt Res Appl 8:659–676.  https://doi.org/10.1002/pip Google Scholar
  33. 33.
    Treharne RE, Seymour-Pierce A, Durose K, Hutchings K, Roncallo S, Lane D (2011) Optical design and fabrication of fully sputtered CdTe/CdS solar cells. J Phys Conf Ser 1:012038.  https://doi.org/10.1088/1742-6596/286/1/012038 CrossRefGoogle Scholar
  34. 34.
    Chen K, Wang Y, Zheng H et al (2018) Optical absorption of thin film solar cells with hybrid arranged bottom grating. Plasmonics 13:815–823.  https://doi.org/10.1007/s11468-017-0577-2 CrossRefGoogle Scholar
  35. 35.
    Nelson J (2003) The physics of solar cells. Imperial College Press, LondonCrossRefGoogle Scholar
  36. 36.
    Li X, Hylton NP, Giannini V, Lee K-H, Ekins-Daukes NJ, Maier SA (2011) Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells. Opt Express S4:A888–A896.  https://doi.org/10.1364/OE.19.00A888 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ke Chen
    • 1
  • Yuanyuan Wang
    • 1
  • Haisuo Wang
    • 1
  • Rui Wu
    • 1
  • Xiaopeng Yu
    • 1
  • Hongyang Shi
    • 1
  • Hongmei Zheng
    • 1
    Email author
  1. 1.School of Mechanical EngineeringHefei University of TechnologyHefeiChina

Personalised recommendations