, Volume 14, Issue 2, pp 321–326 | Cite as

Nonlocal Plasmonic Modes and Plasmonic Band Structures in Cylindrically Curved Graphene

  • Y. ZhouEmail author
  • C. Q. Shao


In this paper, hydrodynamic model has been analytically solved to investigate the nonlocal plasmons in cylindrically curved graphene layers. Within the quasi-static approximation, the dispersion relations for both local and nonlocal cases have been derived; the nonlocal effect is found to shift the dispersion relations upwards. High-order azimuthal modes possess different cutoff frequencies due to such nonlocality, which may occur even in large-scale highly doped structures. In periodically doped cases, the nonlocal effect can modify the corresponding plasmonic band structures, i.e., moving the locations of the bandgaps. The periodicity has made the material more sensitive to the plasmon nonlocality. Our investigations may lead to more attentions to the nonlocal plasmonic responses in graphene which are important for graphene-plasmon-based photonic devices.


Graphene plasmonics Photonic bandgap materials Waveguides 



We thank C. Q. Shao for the use of their computer cluster.


This work was supported by the National Natural Science Foundation of China (11647117) and the Natural Science Foundation of Zhejiang Province (LQ17A040003). C. Q. Shao was supported by the National Natural Science Foundation of China (11747073).


  1. 1.
    Koppens FHL, Chang DE, García de Abajo FJ (2011) Graphene plasmonics: a platform for strong light matter interactions. Nano Lett 11(8):3370–3377. CrossRefGoogle Scholar
  2. 2.
    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6(11):749–758. CrossRefGoogle Scholar
  3. 3.
    Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5):3677–3694. CrossRefGoogle Scholar
  4. 4.
    García de Abajo FJ (2014) Graphene plasmonics: challenges and opportunities. ACS Photonics 1(3):135–152. CrossRefGoogle Scholar
  5. 5.
    Nikitin AY, Guinea F, Garcia-Vidal FJ, Martin-Moreno L (2011) Fields radiated by a nanoemitter in a graphene sheet. Phys Rev B 84(19):195446. CrossRefGoogle Scholar
  6. 6.
    Zhan TR, Zhao FY, Hu XH, Liu XH, Zi J (2012) Band structure of plasmons and optical absorption enhancement in grapheneon subwavelength dielectric gratings at infrared frequencies. Phys Rev B 86:165416. CrossRefGoogle Scholar
  7. 7.
    Thongrattanasiri S, Koppens FHL, García de Abajo FJ (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108(4):047401. CrossRefGoogle Scholar
  8. 8.
    Thongrattanasiri S, García de Abajo FJ (2013) Optical field enhancement by strong plasmon interaction in graphene nanostructures. Phys Rev Lett 110(18):187401. CrossRefGoogle Scholar
  9. 9.
    Stauber T, Gómez-Santos G, García de Abajo FJ (2014) Extraordinary absorption of decorated undoped graphene. Phys Rev Lett 112(7):077401. CrossRefGoogle Scholar
  10. 10.
    Mikhailov SA, Ziegler K (2007) New electromagnetic mode in graphene. Phys Rev Lett 99(1):016803. CrossRefGoogle Scholar
  11. 11.
    Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80(24):245435. CrossRefGoogle Scholar
  12. 12.
    Nikitin AY, Guinea F, García-Vidal FJ, Martín-Moreno L (2011) Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys Rev B 84(16):161407. CrossRefGoogle Scholar
  13. 13.
    Wang W, Apell SP, Kinaret JM (2012) Edge magnetoplasmons and the optical excitations in graphene disks. Phys Rev B 86(12):125450. CrossRefGoogle Scholar
  14. 14.
    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FHL, García de Abajo FJ (2012) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1):431–440. CrossRefGoogle Scholar
  15. 15.
    Croy A, Midtvedt D, Isacsson A, Kinaret JM (2012) Nonlinear damping in graphene resonators. Phys Rev B 86(23):235435CrossRefGoogle Scholar
  16. 16.
    Thongrattanasiri S, Silveiro I, García de Abajo FJ (2012) Plasmons in electrostatically doped graphene. Appl Phys Lett 100(20):201105. CrossRefGoogle Scholar
  17. 17.
    Nikitin AY, Guinea F, Garcia-Vidal FJ, Martin-Moreno L (2012) Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys Rev B 85(8):081405. CrossRefGoogle Scholar
  18. 18.
    Wang W, Kinaret JM (2013) Plasmons in graphene nanoribbons: Interband transitions and nonlocal effects. Phys Rev B 87(19):195424. CrossRefGoogle Scholar
  19. 19.
    Gullans M, Chang DE, Koppens FHL, García de Abajo FJ, Lukin MD (2013) Single-photon nonlinear optics with graphene plasmons. Phys Rev Lett 111(24):247401. CrossRefGoogle Scholar
  20. 20.
    Nikitin AY, Low T, Martin-Moreno L (2014) Anomalous reflection phase of graphene plasmons and its influence on resonators. Phys Rev B 90(4):041407. CrossRefGoogle Scholar
  21. 21.
    Zhan T, Han D, Hu X, Liu X, Chui ST, Zi J (2014) Tunable terahertz radiation from graphene induced by moving electrons. Phys Rev B 89(24):245434. CrossRefGoogle Scholar
  22. 22.
    Fan HM, Wang TB, Liu NH, Liu JT, Liao QH, Yu TB (2014) Tunable plasmonic band gap and defect mode in one-dimensional photonic crystal covered with graphene. J Opt 16:125005. CrossRefGoogle Scholar
  23. 23.
    Wang W, Christensen T, Jauho AP, Thygesen KS, Wubs M, Mortensen NA (2015) Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles. Sci Rep 5:9535. CrossRefGoogle Scholar
  24. 24.
    Gao Y, Ren G, Zhu B, Liu H, Lian Y, Jian S (2014) Analytical model for plasmon modes in graphene-coated nanowire. Opt Express 22(20):24322–24331. CrossRefGoogle Scholar
  25. 25.
    Gao Y, Ren G, Zhu B, Wang J, Jian S (2014) Single-mode graphene-coated nanowire plasmonic waveguide. Opt Lett 39(20):5909–5912. CrossRefGoogle Scholar
  26. 26.
    Lamata IS, Alonso-González P, Hillenbrand R, Nikitin AY (2015) Plasmons in cylindrical 2D materials as a platform for nanophotonic circuits. ACS Photonics 2(2):280–286. CrossRefGoogle Scholar
  27. 27.
    Li RJ, Lin X, Lin SS, Liu X, Chen HS (2015) Tunable deep-subwavelength superscattering using graphene monolayers. Opt Lett 40(8):1651–1654. CrossRefGoogle Scholar
  28. 28.
    Xiao TH, Gan L, Li ZY (2015) Graphene surface plasmon polaritons transport on curved substrates. Photon Res 3(6):300–307. CrossRefGoogle Scholar
  29. 29.
    Silveiro I, Manjavacas A, Thongrattanasiri S, García de Abajo FJ (2013) Plasmonic energy transfer in periodically doped graphene. New J Phys 15:033042. CrossRefGoogle Scholar
  30. 30.
    Yeung KYM, Chee J, Yoon H, Song Y, Kong J, Ham D (2014) Far-infrared graphene plasmonic crystals for plasmonic band engineering. Nano Lett 14(5):2479–2484. CrossRefGoogle Scholar
  31. 31.
    Shi B, Cai W, Zhang X, Xiang Y, Zhan Y, Geng J, Ren M, Xu J (2016) Tunable band-stop filters for graphene plasmons based on periodically modulated graphene. Sci Rep 6:26796. CrossRefGoogle Scholar
  32. 32.
    Zhou Y, Zhu YY, Zhang K, Wu HW, Peng RW, Fan RH, Wang M (2017) Plasmonic band structures in doped graphene tubes. Opt Express 25(11):12081–12089. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations