, Volume 14, Issue 2, pp 293–302 | Cite as

Behavioral and Modal Analysis of Graphene-Based Polygonal Optical Antenna for Enhanced Bio-molecular Detection

  • Rachakonda A. N. S. Aditya
  • Anand Sreekantan ThampyEmail author


Graphene-based polygonal optical antenna is designed and analyzed for enhanced bio-molecular detection. Absorption cross section and electric field enhancement factors of three polygonal structures are compared. The hexagonal structure has exhibited 50% better absorption cross section as compared to that of other structures. Variation of electric field enhancement with frequency is studied and observed on the basis of mode theory. The hexagonal structure has shown an increment in electric field enhancement by 16.60 and 24.11% in contrast to the circular and rhombic structures respectively. Approximation of the hexagonal antenna structure using lumped equivalent circuit is done for better intuition. The vitality of the hexagonal optical antenna for bio-molecular detection is discussed with the aid of chemical potential tuning.


Graphene Edge effect Chemical potential Field enhancement Mode theory Electrical breakdown 


  1. 1.
    Vander H, Matthew G (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10(9):671–684Google Scholar
  2. 2.
    Lin W, Chen X, Cao Q, Tang W, Liu C, Lu W (Jun. 2017) Tailoring active far-infrared resonator with graphene metasurface and its complementary. Plasmonics 12(2):353–360Google Scholar
  3. 3.
    Krivanek OL, Lovejoy TC, Dellby N, Aoki T, Carpenter RW, Rez P, Soignard E (2014) Vibrational spectroscopy in the electron microscope. Nature 514(7521):209–212Google Scholar
  4. 4.
    Chen CT, Tjeng LH, Rudolf P, Meigs G, Rowe JE, Chen J, McCauley JP Jr (1991) Electronic states and phases of KxC60 from photoemission and X-ray absorption spectroscopy. Nature 352(6336):603–605Google Scholar
  5. 5.
    Jan B, Trügler A, Jakab A, Hohenester U, Sönnichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2):161–167Google Scholar
  6. 6.
    Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, Wu C (2012) Induction and molecular signature of pathogenic T H 17 cells. Nat Immunol 13(10):991–999Google Scholar
  7. 7.
    Bharadwaj P, Deutsch B, Novotny L (Aug. 2009) Optical antennas. Adv Opt Photon 1(3):438–483Google Scholar
  8. 8.
    Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AA (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232Google Scholar
  9. 9.
    Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner WE (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3(11):654–657Google Scholar
  10. 10.
    Jornet JM, Akyildiz IF (2011) Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wirel Commun 10(10):3211–3221Google Scholar
  11. 11.
    Li H-J, Wang L-L, Sun B, Huang Z-R, Zhai X (2016) Gate-tunable mid-infrared plasmonic planar band-stop filters based on a monolayer graphene. Plasmonics 11(1):87–93Google Scholar
  12. 12.
    Reed GT (2004) Device physics: the optical age of silicon. Nature 427(6975):595–596Google Scholar
  13. 13.
    Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398(6722):51–54Google Scholar
  14. 14.
    Adato R, Altug H (2013) In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat Commun 4(2154):2154Google Scholar
  15. 15.
    Berrier A, Schaafsma MC, Nonglaton G, Bergquist J, Rivas JG (2012) Selective detection of bacterial layers with terahertz plasmonic antennas. Biomed Opt Express 3(11):2937–2949Google Scholar
  16. 16.
    Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, Hong MK, Erramilli S, Altug H (2009) Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci U S A 106(46):19227–19232Google Scholar
  17. 17.
    Yang J, Zhang J, Wu X, Gong Q (2007) Electric field enhancing properties of the V-shaped optical resonant antennas. Opt Express 15(25):16852–16859Google Scholar
  18. 18.
    Hummel RE, Guenther KH (1995) Handbook of Optical properties: Thin films for optical coatings. CRC Press, FloridaGoogle Scholar
  19. 19.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191Google Scholar
  20. 20.
    Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J (2015) Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun 6(7747):7747Google Scholar
  21. 21.
    Aswathy B, Sony G, Gopchandran KG (2014) Shell thickness-dependent plasmon coupling and creation of SERS hot spots in Au@ Ag core-shell nanostructures. Plasmonics 9(6):1323–1331Google Scholar
  22. 22.
    Barik A, Zhang Y, Grassi R, Nadappuram BP, Edel JB, Low T, Koester SJ, Oh S-H (2017) Graphene-edge dielectrophoretic tweezers for trapping of biomolecules. Nat Commun 8(1):1867Google Scholar
  23. 23.
    Kleshch VI, Bandurin DA, Orekhov AS, Purcell ST, Obraztsov AN (2015) Edge field emission of large-area single layer graphene. Appl Surf Sci 357:1967–1974Google Scholar
  24. 24.
    Xiao Z, She J, Deng S, Tang Z, Li Z, Lu J, Xu N (2010) Field electron emission characteristics and physical mechanism of individual single-layer graphene. ACS Nano 4(11):6332–6336Google Scholar
  25. 25.
    Lee EJ, Balasubramanian K, Weitz RT, Burghard M, Kern K (2008) Contact and edge effects in graphene devices. Nat Nanotechnol 3(8):486–490Google Scholar
  26. 26.
    Lin J-Y, Lee P-T (2018) Boosting and localizing near-field in plasmonic mirror-image nanoepsilon. Plasmonics 13(1):81–89Google Scholar
  27. 27.
    Deshpande SV, Gulari E, Brown SW, Rand SC (1995) Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition. J Appl Phys 77(12):6534–6541Google Scholar
  28. 28.
    Aditya RANS, Thampy AS (2018) Field enhanced graphene based dual hexagonal ring optical antenna for tip-enhanced spectroscopy. Infrared Phys Technol 90:70–77Google Scholar
  29. 29.
    Thampy AS, Darak MS, Dhamodharan SK (Oct. 2015) Analysis of graphene based optically transparent patch antenna for terahertz communications. Physica E 66:67–73Google Scholar
  30. 30.
    Sheng S, Li K, Kong F, Zhuang H (2015) Analysis of a tunable band-pass plasmonic filter based on graphene nanodisk resonator. Opt Commun 336:189–196Google Scholar
  31. 31.
    Anand S, Kumar DS, Wu RJ, Chavali M (2014) Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik 125(19):5546–5549Google Scholar
  32. 32.
    Jordan EC, Balmain KG (1967) “Fundamentals of electromagnetic engineering”. In EM Waves & Radiating Systems, 2nd ed. New Jersey: Prentice-Hall Inc., pp. 1. [Online]. Available:
  33. 33.
    Gu G, Li L, Zhang Y, Kemsri T, Lu X (2017) Analysis of mutual couplings in a concentric circular ring plasmonic optical antenna array. Sci Rep 7(1):10996Google Scholar
  34. 34.
    Bhat B, Koul SK (2007) Stripline-like transmission lines for microwave integrated circuits. New Age International, New DelhiGoogle Scholar
  35. 35.
    Hayt WH, Kemmerly JE, Durbin SM (2007) Engineering circuit analysis. McGraw-Hill, New YorkGoogle Scholar
  36. 36.
    Striebel M, Wrachtrup J, Gerhardt I (2017) Absorption and extinction cross sections and photon streamlines in the optical near-field. Sci Rep 7(1):15420Google Scholar
  37. 37.
    Agio M, Alù A (2013) Optical Antennas. Cambridge University Press, CambridgeGoogle Scholar
  38. 38.
    Shafiei F, Monticone F, Le KQ, Liu X-X, Hartsfield T, Alù A, Li X (2013) A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol 8(2):95–99Google Scholar
  39. 39.
    Hummel RE, Wibsman P (1997) Handbook of Optical properties: Optics of small particles, interfaces and surfaces. CRC Press, FloridaGoogle Scholar
  40. 40.
    Clarkson JP, Winans J, Fauchet PM (2011) On the scaling behavior of dipole and quadrupole modes in coupled plasmonic nanoparticle pairs. Opt Mater Express 1(5):970–979Google Scholar
  41. 41.
    Dinh TV (2014) Biomedical photonics handbook. CRC Press, FloridaGoogle Scholar
  42. 42.
    Karanikolas VD, Marocico CA, Bradley AL (2015) Dynamical tuning of energy transfer efficiency on a graphene monolayer. Phys Rev B 91(12):125422Google Scholar
  43. 43.
    Lu X, Al-Qadiri HM, Lin M, Rasco BA (Jan. 2011) Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food Bioprocess Technol 4(6):919–935Google Scholar
  44. 44.
    Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23(6):741–745Google Scholar
  45. 45.
    Hong J-S, Li S (Apr. 2004) Theory and experiment of dual-mode microstrip triangular patch resonators and filters. IEEE Trans Microw Theory Techn 52(4):1237–1243Google Scholar
  46. 46.
    Nalwa HS (1999) Handbook of low and high dielectric constant materials and their applications. Academic Press, CambridgeGoogle Scholar
  47. 47.
    Wibbeler J, Pfeifer G, Hietschold M (1998) Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sens Actuators A Phys 71(1–2):74–80Google Scholar
  48. 48.
    Gómez-Díaz JS, Esquius-Morote M, Perruisseau-Carrier J (2013) Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips. Opt Express 21(21):24856–24872Google Scholar
  49. 49.
    Rauthan CMS, Srivastava JK (1990) Electrical breakdown voltage characteristics of buried silicon nitride layers and their correlation to defects in the nitride layer. Mater Lett 9(7–8):252–258Google Scholar
  50. 50.
    Hsu TR (2002) MEMS and microsystems Tata. McGraw-Hill, New DelhiGoogle Scholar
  51. 51.
    Shi X, Ge L, Wen X, Han D, Yang Y (2016) Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale. Opt Express 24(23):26357–26362Google Scholar
  52. 52.
    Zarrabi FB, Naser-Moghadasi M, Heydari S, Maleki M, Arezomand AS (2016) Cross-slot nano-antenna with graphene coat for bio-sensing application. Opt Commun 371:34–39Google Scholar
  53. 53.
    Moghadasi MN, Sadeghzadeh RA, Toolabi M, Jahangiri P, Zarrabi FB (2016) Fractal cross aperture nano-antenna with graphene coat for bio-sensing application. Microelectron Eng 162:1–5Google Scholar
  54. 54.
    Yao Y, Kats MA, Shankar R, Song Y, Kong J, Loncar M, Capasso F (2013) Wide wavelength tuning of optical antennas on graphene with nanosecond response time. Nano Lett 14(1):214–219Google Scholar
  55. 55.
    Yang Z-J, Zhao Q, Xiao S, He J (2017) Engineering two-wire optical antennas for near field enhancement. Photonics Nanostruct Fundam Appl 25:72–76Google Scholar
  56. 56.
    Gadalla MN, Abdel-Rahman M, Shamim A (2014) Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Sci Rep 4:4270Google Scholar
  57. 57.
    Kim S-K, Zhang X, Hill DJ, Song K-D, Park J-S, Park H-G, Cahoon JF (2014) Doubling absorption in nanowire solar cells with dielectric shell optical antennas. Nano Lett 15(1):753–758Google Scholar
  58. 58.
    Wang D, Yang T, Crozier KB (2011) Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation. Opt Express 19(3):2148–2157Google Scholar
  59. 59.
    Yang J, Kong F, Li K, Sheng S (2015) Analysis of a log periodic nano-antenna for multi-resonant broadband field enhancement and the Purcell factor. Opt Commun 342:230–237Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rachakonda A. N. S. Aditya
    • 1
  • Anand Sreekantan Thampy
    • 1
    Email author
  1. 1.Department of Communication Engineering, School of Electronics EngineeringVellore Institute of TechnologyVellore 632014India

Personalised recommendations