Advertisement

Plasmonics

, Volume 14, Issue 1, pp 241–245 | Cite as

Plasmonic Lattice Mode Formed by Ag Nanospheres on Silica Pillar Arrays

  • Xiaodan Huang
  • Chaogang LouEmail author
  • Hao Zhang
  • Didier Pribat
Article

Abstract

A structure of periodic metallic nanoparticle arrays is presented to form plasmonic lattice mode (PLM). In the arrays, each Ag nanosphere is on the top of a SiO2 nanopillar which sits on a quartz substrate. The simulated results show that the transmittance of the structure varies rapidly from the maximum to the minimum in a narrow wavelength range due to the coupling between localized surface plasmonic resonance of Ag nanospheres and the wavelength-dependent diffraction caused by the structure, while the phenomenon is not observed in the structure of Ag nanospheres directly sitting on the quartz substrate. The reason is that the equivalent refractive index of SiO2 nanopillar arrays is lower than that of the quartz substrate and provides a more homogeneous surrounding to Ag nanospheres. This provides a possible way to promote the application of the PLM.

Keywords

Localized plasmonic resonance Diffraction Plasmonic lattice mode Metallic nanoparticles 

Notes

Funding Information

This work was supported by the Natural Science Foundation of Jiangsu (Grant No. BK2011033), the Primary Research & Development Plan of Jiangsu Province (Grant No. BE2016175), and the Chinese Postdoctoral Science Foundation (Grant No. 2017M621581).

References

  1. 1.
    Sadeghi SM, Gutha RR, Wing WJ (2016) Turning on plasmonic lattice modes in metallic nanoantenna arrays via silicon thin films. Opt Lett 41(14):3367–3370.  https://doi.org/10.1364/OL.41.003367 CrossRefPubMedGoogle Scholar
  2. 2.
    SM S, Wing WJ, Campbell Q (2016) Normal and anomalous plasmonic lattice modes of gold nanodisk arrays in inhomogeneous media. J Appl Phys 119(11):114307.  https://doi.org/10.1063/1.4944324 CrossRefGoogle Scholar
  3. 3.
    Böhm M, Uhlig T, Derenko S, Eng LM (2017) Mechanical tuning of plasmon resonances in elastic, two-dimensional gold-nanorod arrays. Opt Mater Express 7(6):1882–1897.  https://doi.org/10.1364/OME.7.001882 CrossRefGoogle Scholar
  4. 4.
    Hajebifard A, Berini P (2017) Fano resonances in plasmonic heptamer nano-hole arrays. Opt Express 25(16):18566–18580.  https://doi.org/10.1364/OE.25.018566 CrossRefPubMedGoogle Scholar
  5. 5.
    AG N, Kabashin AV, Dallaporta H (2012) Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects. Opt Express 20(25):27941–27952.  https://doi.org/10.1364/OE.20.027941 CrossRefGoogle Scholar
  6. 6.
    Félidj N, Laurent G, Aubard J, Lévi G (2005) Grating-induced plasmon mode in gold nanoparticle arrays. J Chem Phys 123(22):221103.  https://doi.org/10.1063/1.2140699 CrossRefPubMedGoogle Scholar
  7. 7.
    Kravets VG, Schedin F, Grigorenko AN (2008) Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys Rev Lett 101(8):087403.  https://doi.org/10.1103/PhysRevLett.101.087403 CrossRefPubMedGoogle Scholar
  8. 8.
    Lamprecht B, Schider G, Lechner RT, Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2000) Metal nanoparticle ratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84(10):4721–4724CrossRefPubMedGoogle Scholar
  9. 9.
    Vitrey A, Aigouy L, Prieto P, García-Martín JM, González MU (2014) Parallel collective resonances in arrays of gold nanorods. Nano Lett 14(4):2079–2085.  https://doi.org/10.1021/nl500238h CrossRefPubMedGoogle Scholar
  10. 10.
    Dejarnette D, Norman J, Roper DK (2012) Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry. Appl Phys Lett 101(18):183104.  https://doi.org/10.1063/1.4764943 CrossRefGoogle Scholar
  11. 11.
    Zou S, Schatz GC (2004) Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. J Chem Phys 121(24):12606–12612CrossRefPubMedGoogle Scholar
  12. 12.
    Rodriguez SRK, Abass A, Maes B, Janssen OTA, Vecchi G, Gómez Rivas J (2011) Coupling bright and dark plasmonic lattice resonances. Phys Rev X 1(2):021019Google Scholar
  13. 13.
    AD H, Barnes WL (2016) Plasmonic surface lattice resonances in arrays of metallic nanoparticle dimers. J Opt 18(3):035005.  https://doi.org/10.1088/2040-8978/18/3/035005 CrossRefGoogle Scholar
  14. 14.
    BD T, Kravets VG, Schedin F, Auton G, Thomas PA, Grigorenko AN (2014) Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments. ACS Photonics 1(11):1116–1126.  https://doi.org/10.1021/ph5002186 CrossRefGoogle Scholar
  15. 15.
    Offermans P, Schaafsma MC, SRK R, Zhang Y, Crego-calama M, Brongersma SH, Rivas JG (2011) Universal scaling of the figure of merit of plasmonic sensors. ACS Nano 5(6):5151–5157.  https://doi.org/10.1021/nn201227b CrossRefPubMedGoogle Scholar
  16. 16.
    Li J, Chen C, Lagae L, Dorpe PV (2015) Nanoplasmonic sensors with various photonic coupling effects for detecting different targets. J Phys Chem C 119(52):29116–29122.  https://doi.org/10.1021/acs.jpcc.5b10436 CrossRefGoogle Scholar
  17. 17.
    AI K, Evlyukhin AB, Gonçalves MR, Reinhardt C, Koroleva A, Arnedillo ML, Kiyan R, Marti O, Chichkov BN (2011) Laser fabrication of large-scale nanoparticle arrays for sensing applications. ACS Nano 5(6):4843–4849.  https://doi.org/10.1021/nn2009112 CrossRefGoogle Scholar
  18. 18.
    Auguié B, Bendaña XM, Barnes WL, García de Abajo FJ (2010) Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate. Phys Rev B 82(15):155447.  https://doi.org/10.1103/PhysRevB.82.155447 CrossRefGoogle Scholar
  19. 19.
    Auguié B, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101(14):143902.  https://doi.org/10.1103/PhysRevLett.101.143902 CrossRefPubMedGoogle Scholar
  20. 20.
    AG N, Nguyen T, Dallaporta H (2013) Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies. Appl Phys Lett 102(22):221116.  https://doi.org/10.1063/1.4803535 CrossRefGoogle Scholar
  21. 21.
    Palik ED (1985) Handbook of optical constants of solids. Academic Press, New YorkGoogle Scholar
  22. 22.
    M L B, Kik PG (2007) Surface plasmon nanophotonics. Springer Netherlands, DordrechtGoogle Scholar
  23. 23.
    Meier M, Wokaun A, Liao PF (1985) Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit. J Opt Soc Am B 2(6):931–949.  https://doi.org/10.1364/JOSAB.2.000931 CrossRefGoogle Scholar
  24. 24.
    KT C, Fluhr W, Meier M, Wokaum A (1986) Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering. J Opt Soc Am B 3(3):430–440.  https://doi.org/10.1364/JOSAB.3.000430 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and EngineeringSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations