Advertisement

Plasmonics

, Volume 14, Issue 1, pp 179–185 | Cite as

A Near-Infrared Perfect Absorber Assisted by Tungsten-Covered Ridges

  • Buzheng WeiEmail author
  • Shuisheng Jian
Article
  • 91 Downloads

Abstract

A periodic tungsten-covered dielectric ridge on substrate assembly is proposed in this article to investigate the perfect absorption in the near-infrared regime. The localized dipolar resonance and the propagating surface plasmon mode significantly restrict the reflectance thus forming two discrete absorption peaks. In the process of discovering perfect absorption, the geometrical parameters such as the tungsten layer thickness, ridge depth and width, substrate spacer thickness and the lateral period are correspondingly numerically explored and a rather high absorption rate of 99.9% can be achieved. Furthermore, the absorption peak is sensitive to the ground substrate index which makes it a potential candidate for compactly integrated on chip sensing applications. The polarization direction of the incident light modulates the absorption to a wider bandwidth and the oblique incidence splits the propagating mode along with a rather weak Fano-type absorption peak. The research may pave way for transition metal integrated on chip absorption system.

Keywords

Absorber Tungsten Metamaterial 

References

  1. 1.
    Shelby R, Smith D, Schultz S (2001) Experimental verification of a negative index of refraction. Science (New York, N.Y.) 292(5514):77–79.  https://doi.org/10.1126/science.1058847 CrossRefGoogle Scholar
  2. 2.
    Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187.  https://doi.org/10.1103/PhysRevLett.84.4184, https://link.aps.org/doi/10.1103/PhysRevLett.84.4184 CrossRefGoogle Scholar
  3. 3.
    Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science (New York, N.Y.) 308(5721):534–537.  https://doi.org/10.1126/science.1108759 CrossRefGoogle Scholar
  4. 4.
    Song Z, Gao Z, Zhang Y, Zhang B (2014) Terahertz transparency of optically opaque metallic films. EPL (Europhys Lett) 106(2):27005. http://stacks.iop.org/0295-5075/106/i=2/a=27005 CrossRefGoogle Scholar
  5. 5.
    Song Z, Wang K, Li J, Liu QH (2018) Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Opt Express 26(6):7148–7154.  https://doi.org/10.1364/OE.26.007148. http://www.opticsexpress.org/abstract.cfm?URI=oe-26-6-7148 CrossRefGoogle Scholar
  6. 6.
    Lei L, Li S, Huang H, Tao K, Xu P (2018) Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt Express 26(5):5686–5693.  https://doi.org/10.1364/oe.26.005686 CrossRefGoogle Scholar
  7. 7.
    Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402.  https://doi.org/10.1103/PhysRevLett.100.207402. https://link.aps.org/doi/10.1103/PhysRevLett.100.207402 CrossRefGoogle Scholar
  8. 8.
    Chagarov E, Sardashti K, Kummel AC, Lee YS, Haight R, Gershon TS (2016) Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics. The Journal of Chemical Physics 144(10):104704.  https://doi.org/10.1063/1.4943270 CrossRefGoogle Scholar
  9. 9.
    Schneider PC, France K, Gnther HM, Herczeg G, Robrade J, Bouvier J, McJunkin M, Schmitt JHMM (2015) X-ray to NIR emission from AA Tauri during the dim state - occultation of the inner disk and gas-to-dust ratio of the absorber⋆. A&A 584:A51.  https://doi.org/10.1051/0004-6361/201425583 CrossRefGoogle Scholar
  10. 10.
    Al-Bahi AM, Soliman AY, Mohamed NMA, Radioanal J (2018) Detection of illicit material using neutron activation: weakness and solutions. Nucl Chem 315(3):557–564.  https://doi.org/10.1007/s10967-017-5689-9 CrossRefGoogle Scholar
  11. 11.
    Wang BX, Wang GZ, Sang T, Wang LL (2017) Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure. Sci Rep 7:41373.  https://doi.org/10.1038/srep41373. http://europepmc.org/articles/PMC5264608 CrossRefGoogle Scholar
  12. 12.
    Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt Express 16(10):7181–7188.  https://doi.org/10.1364/OE.16.007181. http://www.opticsexpress.org/abstract.cfm?URI=oe-16-10-7181 CrossRefGoogle Scholar
  13. 13.
    Tao H, Bingham CM, Pilon D, Fan K, Strikwerda AC, Shrekenhamer D, Padilla WJ, Zhang RD, Averitt J (2010) A dual band terahertz metamaterial absorber. J Phys D: Appl Phys 43(22): 225102. http://stacks.iop.org/0022-3727/43/i=22/a=225102 CrossRefGoogle Scholar
  14. 14.
    Ma Y, Chen Q, Grant J, Saha SC, Khalid A, Cumming DRS (2011) A terahertz polarization insensitive dual band metamaterial absorber. Opt Lett 36(6):945–947. http://ol.osa.org/abstract.cfm?URI=ol-36-6-945
  15. 15.
    Yang J, Zhu Z, Zhang J, Guo C, Xu W, Liu K, Yuan X, Qin S (2018) Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Sci Rep 8(1):3239.  https://doi.org/10.1038/s41598-018-21705-2. http://europepmc.org/articles/PMC5818652 CrossRefGoogle Scholar
  16. 16.
    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3):131–314CrossRefGoogle Scholar
  17. 17.
    Apuzzo F, Limaj O, Di Gaspare A, Giliberti V, Domenici F, Sennato S, Bordi F, Lupi S, Ortolani M (2015) Mid-infrared Surface Plasmon Polariton Sensors Resonant with the Vibrational Modes of Phospholipid Layers. Springer, Netherlands, pp 439–441Google Scholar
  18. 18.
    Fang Y, Hu J, Wang J (2013) Double-frequency filter based on coupling of cavity modes and surface plasmon polaritons. IEEE Photonics J 6(2):1–7CrossRefGoogle Scholar
  19. 19.
    Drezet A, Hohenau A, Stepanov AL, Ditlbacher H, Steinberger B, Aussenegg FR, Leitner A, Krenn JR (2006) Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes. Plasmonics 1(2):141–145CrossRefGoogle Scholar
  20. 20.
    Okahisa S, Nakayama K, Nakayama Y, Ishii Y, Fukuda M (2016) Guiding properties of 1.31- and 1.55-um-wavelength surface plasmon polaritons on striped waveguides on silicon and their wavelength-selective detection. J Lightwave Technol 35(13):2702–2711CrossRefGoogle Scholar
  21. 21.
    Nemova G, Kashyap R (2006) Fiber-Bragg-grating-assisted surface plasmon-polariton sensor. Opt Lett 31 (14):2118–2120CrossRefGoogle Scholar
  22. 22.
    Li Z, Stan L, Czaplewski DA, Yang X, Gao J (2018) Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators. Opt Express 26(5):5616–5631.  https://doi.org/10.1364/OE.26.005616. http://www.opticsexpress.org/abstract.cfm?URI=oe-26-5-5616 CrossRefGoogle Scholar
  23. 23.
    Chirumamilla M, Roberts AS, Ding F, Wang D, Kristensen PK, Bozhevolnyi SI, Pedersen K (2016) Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications. Opt Mater Express 6(8):2704–2714.  https://doi.org/10.1364/OME.6.002704. http://www.osapublishing.org/ome/abstract.cfm?URI=ome-6-8-2704 CrossRefGoogle Scholar
  24. 24.
    Wang BX, Zhai X, Wang GZ, Huang WQ, Wang LL (2015) A novel dual-band terahertz metamaterial absorber for a sensor application. J Appl Phys 117(1):014504.  https://doi.org/10.1063/1.4905261 CrossRefGoogle Scholar
  25. 25.
    Palik E GG (1998) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar
  26. 26.
    Wang J, Tian H, Wang Y, Li X, Cao Y, Li L, Liu J, Zhou Z (2018) Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial. Opt Express 26(5):5769–5776.  https://doi.org/10.1364/OE.26.005769. http://www.opticsexpress.org/abstract.cfm?URI=oe-26-5-5769 CrossRefGoogle Scholar
  27. 27.
    Buzheng Wei SJ (2017) Analog of midinfrared electromagnetically induced-transparency and slow rainbow trapping light based on graphene nanoribbon-coated silica substrate. J. Nanophotonics 11:11–11–9.  https://doi.org/10.1117/1.JNP.11.026011 Google Scholar
  28. 28.
    Wei B, Liu H, Ren G, Yang Y, Ye S, Pei L, Jian S (2017) Graphene based silicon–air grating structure to realize electromagnetically-induced-transparency and slow light effect. Phys Lett A 381(3): 160–165.  https://doi.org/10.1016/j.physleta.2016.10.034. http://www.sciencedirect.com/science/article/pii/S0375960116306703 CrossRefGoogle Scholar
  29. 29.
    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Fleischhauer T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the drude damping limit. Nat Mater 8(9):758–762.  https://doi.org/10.1038/nmat2495 CrossRefGoogle Scholar
  30. 30.
    Wei B, Jian S (2018) A nanoscale fano resonator by graphene-gold dipolar interference. Plasmonics.  https://doi.org/10.1007/s11468-018-0703-9

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Lab of All Optical Network, Advanced Telecommunication Network of EMC, School of Electronic Information and EngineeringBeijing Jiaotong UniversityBeijingChina
  2. 2.Institute of Lightwave TechnologyBeijing Jiaotong UniversityBeijingChina

Personalised recommendations