, Volume 14, Issue 1, pp 173–178 | Cite as

Tunable Goos-Hänchen Shift of Surface Plasmon Beam Due to Graphene in a Metal-Dielectric System

  • A. A. BocharovEmail author


The tunneling of surface plasmon waves between two slabs of dielectric prisms superposed on the metal surface is studied. The prism with the incident surface plasmon wave is superposed by a stack of graphene sheets. The analytical theory is built to connect the Fermi energy of graphene with the Goos-Hänchen shift of the transmitted surface plasmon waves. The obtained results may be useful for developing integral switching devices on the basis of surface plasmon polaritons.


Optical tunneling Surface plasmon polaritons Goos-Hänchen shift Graphene 



The author is grateful to Professor V.Ya. Prinz for the problem formulation and support to the research.

Funding Information

This work was supported by RFBR Grant 15-02-99696.


  1. 1.
    Goos F, Hänchen H (1947) Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann Phys 436:333–346. CrossRefGoogle Scholar
  2. 2.
    Artmann KV (1948) Berechnung der Seitenversetzung des totalreflektierten Strahles. Ann Phys (Leipzig) 437:87–102. CrossRefGoogle Scholar
  3. 3.
    Renard RH (1964) Total reflection: a new evaluation of the Goos–Hänchen shift. J Opt Soc Am 54:1190–1197. CrossRefGoogle Scholar
  4. 4.
    Ghatak A, Banerjee S (1989) Temporal delay of a pulse undergoing frustrated total internal reflection. Appl Opt 28:1960–1961. CrossRefGoogle Scholar
  5. 5.
    Chen X, Li C-F, Wei R-R, Zhang Y (2009) Goos-Hänchen shifts in frustrated total internal reflection studied with wave-packet propagation. Phys Rev A 80:015803. CrossRefGoogle Scholar
  6. 6.
    Bocharov AA (2017) Goos-Hänchen shift of a transmitted light beam in frustrated total internal reflection for moderately large gap widths. Opt Commun 389:297–302. CrossRefGoogle Scholar
  7. 7.
    Gao D, Gao L (2009) Tunable lateral shift through nonlinear composites of nonspherical particles. Prog Electroamgn Res PIER 99:273–287. CrossRefGoogle Scholar
  8. 8.
    Jiu-Sheng L, Jiang-wang W, Le ZH (2014) Giant tunable Goos–Hänchen shifts based on prism/graphene structure in terahertz wave region. IEEE Photonics J 6:5900207CrossRefGoogle Scholar
  9. 9.
    Tran TQ, Lee S, Heo H, Kim S (2016) Tunable wide-angle tunneling in graphene-assisted frustrated total internal reflection. Sci Rep 6:199975Google Scholar
  10. 10.
    Chen X, Lu X-J, Ban Y, Li C-F (2013) Electronic analogy of the Goos–Hänchen effect: a review. J Opt 15:033001. CrossRefGoogle Scholar
  11. 11.
    Chen X, Tao J-W, Ban Y (2011) Goos-Hänchen-like shifts for Dirac fermions in monolayer graphene barrier. Eur Phys B 79:203–208CrossRefGoogle Scholar
  12. 12.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162. CrossRefGoogle Scholar
  13. 13.
    Liu C-H, Chang Y-C, Norris HB, Zhong Z (2014) Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nanotechnol 9:273CrossRefGoogle Scholar
  14. 14.
    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photon 6:749CrossRefGoogle Scholar
  15. 15.
    Lao J, Tao J, Wang QJ, Huang XG (2014) Tunable graphene-based plasmonic waveguides: nano modulators and nano attenuators. Laser Photonics Rev 8:569–574. CrossRefGoogle Scholar
  16. 16.
    Jiang L, Wang Q, Xiang Y, Dai X, Wen S (2013) Electrically tunable Goos–Hänchen shift of light beam reflected from a graphene-on-dielectric surface. IEEE Photonics J 5:6500108CrossRefGoogle Scholar
  17. 17.
    Chen Y, Ban Y, Zhu Q-B, Chen X (2016) Graphene-assisted resonant transmission and enhanced Goos–Hänchen shift in a frustrated total internal reflection configuration. Opt Lett 41:4468–4471. CrossRefGoogle Scholar
  18. 18.
    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314. CrossRefGoogle Scholar
  19. 19.
    Ditlbacher H, Galler N, Koller DM, Hohenau A, Leitner A, Aussenegg FR, Krenn JR (2008) Coupling dielectric waveguide modes to surface plasmon polaritons. Opt Express 16:10455. CrossRefGoogle Scholar
  20. 20.
    Lee S-Y, Park J, Woo I, Park N, Lee B (2010) Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap. Appl Phys Lett 97:133113CrossRefGoogle Scholar
  21. 21.
    Gausynin V, Sharapov S, Carbotte J, Phy J (2007) Magneto-optical conductivity in graphene. Condens Matter 19:026222CrossRefGoogle Scholar
  22. 22.
    Hanson GW (2008) Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Atennas Propag 56(3):747–757CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Rzhanov Institute of Semiconductor Physics SB RASNovosibirskRussia

Personalised recommendations