Advertisement

Plasmonics

, Volume 14, Issue 1, pp 155–163 | Cite as

Ultra-stable D-shaped Optical Fiber Refractive Index Sensor with Graphene-Gold Deposited Platform

  • Guowen An
  • Shuguang LiEmail author
  • Tonglei Cheng
  • Xin Yan
  • Xuenan Zhang
  • Xue Zhou
  • Zhenyu Yuan
Article

Abstract

In this paper, we demonstrate a high sensitivity refractive index (RI) sensor with D-shaped structure covered with gold and graphene film. Specifically, the effect of structural parameters on the stability of fiber sensor is analyzed. In our research, it have been found that the sensor we proposed is not very sensitive to the change of structure parameters on the premise of ensuring the sensing precision. This advantage means that the requirements for machining errors are reduced. Further probing shows that the proposed sensor shows a maximum wavelength interrogation sensitivity of 4391nm/RIU with the dynamic refractive index range from 1.33 to 1.39 and a maximum amplitude sensitivity of 1139RIU− 1 with the analyte RI = 1.38 in the visible region. The corresponding resolution are 2.28 × 10− 5 and 8.78 × 10− 6 based on the methods of wavelength interrogation and amplitude-(or phase-) based method. These characteristics of compact sensing architectures, simple to fabricate, and high sensitivity open the possibility of using this type of sensor in biological applications.

Keywords

Photonic crystal fibers Surface plasmons Fiber optics sensors Optical sensing and sensors 

Notes

Funding Information

This work was supported by the Natural Science Foundation of Liaoning Province, China (2014020020), National Natural Science Foundation of China (No. 61504023), Liaoning Province Natural Science Foundation (20170540324), Fundamental Research Funds for the Central Universities under Grants Nos. N130404001 and N150403003, and the Project-sponsored by SRF for ROCS, SEM(47-6).

References

  1. 1.
    An G, Li S, Yan X, Zhang X, Yuan Z, Zhang Y (2016) High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber. JOSA B 33(7):1330–1334CrossRefGoogle Scholar
  2. 2.
    Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94(3):031,901CrossRefGoogle Scholar
  3. 3.
    Chen D, Hu G, Chen L (2011) Dual-core photonic crystal fiber for hydrostatic pressure sensing. IEEE Photon Technol Lett 23(24):1851–1853CrossRefGoogle Scholar
  4. 4.
    Gauvreau B, Hassani A, Fehri MF, Kabashin A, Skorobogatiy M (2007) Photonic bandgap fiber-based surface plasmon resonance sensors. Opt Express 15(18):11,413–11,426CrossRefGoogle Scholar
  5. 5.
    Hakomori S, Asai T, Mizuno N (2002) Single-side polishing method for substrate edge, and apparatus therefor. US Patent 6,402,596Google Scholar
  6. 6.
    Hassani A, Skorobogatiy M (2007) Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J Opt Soc Am B 24(6):1423–1429CrossRefGoogle Scholar
  7. 7.
    Hassani A, Skorobogatiy M (2009) Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. JOSA B 26(8):1550–1557CrossRefGoogle Scholar
  8. 8.
    Huang Y, Zhu W, Li Z, Chen G, Chen L, Zhou J, Lin H, Guan J, Fang W, Liu X et al (2018) High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film. Sensors Actuators B Chem 255:57–69CrossRefGoogle Scholar
  9. 9.
    Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A 23(12):2135–2136CrossRefGoogle Scholar
  10. 10.
    Lu Y, Hao CJ, Wu BQ, Huang XH, Wen WQ, Fu XY, Yao J (2012) Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments. Sensors 12(9):12,016–12,025CrossRefGoogle Scholar
  11. 11.
    Mak KF, Sfeir MY, Misewich JA, Heinz TF (2010) The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. Proc Natl Acad Sci 107(34):14,999–15,004CrossRefGoogle Scholar
  12. 12.
    Malitson I (1965) Interspecimen comparison of the refractive index of fused silica. Josa 55(10):1205–1209CrossRefGoogle Scholar
  13. 13.
    May-Arrioja DA, Guzman-Sepulveda JR (2017) Highly sensitive fiber optic refractive index sensor using multicore coupled structures. J Light Technol 35(13):2695–2701CrossRefGoogle Scholar
  14. 14.
    Nagasaki A, Saitoh K, Koshiba M (2011) Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt Express 19(4):3799–3808CrossRefGoogle Scholar
  15. 15.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308CrossRefGoogle Scholar
  16. 16.
    Otupiri R, Akowuah EK, Haxha S, Ademgil H, Abdelmalek F, Aggoun A (2014) A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photon J 6(4):1–11CrossRefGoogle Scholar
  17. 17.
    Paliwal A, Gaur R, Sharma A, Tomar M, Gupta V (2016) Sensitive optical biosensor based on surface plasmon resonance using zno/au bilayered structure. Optik - Int J Light Electron Opt 127(19):7642–7647CrossRefGoogle Scholar
  18. 18.
    Patnaik A, Senthilnathan K, Jha R (2015) Graphene-based conducting metal oxide coated d-shaped optical fiber spr sensor. IEEE Photon Technol Lett 27(23):2437–2440CrossRefGoogle Scholar
  19. 19.
    Rifat AA, Ahmed R, Mahdiraji GA, Adikan FM (2017) Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-ir. IEEE Sensors J 17(9):2776–2783CrossRefGoogle Scholar
  20. 20.
    Rifat AA, Mahdiraji GA, Ahmed R, Chow DM, Sua Y, Shee Y, Adikan FM (2016) Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photon J 8(1):1–8CrossRefGoogle Scholar
  21. 21.
    Sharma AK, Jha R, Gupta B (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors J 7(8):1118–1129CrossRefGoogle Scholar
  22. 22.
    Shi F, Peng L, Zhou G, Cang X, Hou Z, Xia C (2015) An elliptical core d-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit. Plasmonics 10(6):1263–1268CrossRefGoogle Scholar
  23. 23.
    Smith CM, Venkataraman N, Gallagher MT, Müller D, West JA, Borrelli NF, Allan DC, Koch KW (2003) Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424(6949):657CrossRefGoogle Scholar
  24. 24.
    Song B, Li D, Qi W, Elstner M, Fan C, Fang H (2010) Graphene on au (111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. Chem Phys Chem 11(3):585–589CrossRefGoogle Scholar
  25. 25.
    Vial A, Grimault AS, Macías D, Barchiesi D, de La Chapelle ML (2005) Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Physical Review B 71(8):085,416CrossRefGoogle Scholar
  26. 26.
    Wu L, Chu H, Koh W, Li E (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14,395–14,400CrossRefGoogle Scholar
  27. 27.
    Wu T, Shao Y, Wang Y, Cao S, Cao W, Zhang F, Liao C, He J, Huang Y, Hou M (2017) Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt Express 25(17):20,313CrossRefGoogle Scholar
  28. 28.
    Yang X, Lu Y, Wang M, Yao J (2016) Spr sensor based on exposed-core grapefruit fiber with bimetallic structure. IEEE Photon Technol Lett 28(6):649–652CrossRefGoogle Scholar
  29. 29.
    Ying Y, Si GY, Luan FJ, Xu K, Qi YW, Li HN (2017) Recent research progress of optical fiber sensors based on d-shaped structure. Opt Laser Technol 90:149–157CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Zhou C, Xia L, Yu X, Liu D (2011) Wagon wheel fiber based multichannel plasmonic sensor. Opt Express 19(23):22,863–22,873CrossRefGoogle Scholar
  31. 31.
    Zhang Z, Shi Y, Bian B, Lu J (2008) Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt Express 16(3):1915–1922CrossRefGoogle Scholar
  32. 32.
    Zhao D, Chen X, Zhou K, Zhang L, Bennion I, MacPherson WN, Barton JS, Jones JD (2004) Bend sensors with direction recognition based on long-period gratings written in d-shaped fiber. Appl Opt 43(29):5425–5428CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guowen An
    • 1
  • Shuguang Li
    • 1
    Email author
  • Tonglei Cheng
    • 1
  • Xin Yan
    • 1
  • Xuenan Zhang
    • 1
  • Xue Zhou
    • 1
  • Zhenyu Yuan
    • 1
  1. 1.College of Information Science and EngineeringNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations