, Volume 14, Issue 1, pp 147–154 | Cite as

An Optimal Au Grating Structure for Light Absorption in Amorphous Silicon Thin Film Solar Cell

  • Tahir IqbalEmail author
  • Mohsin IjazEmail author
  • Muhammad Javaid
  • Muhammad Rafique
  • Khalid Nadeem Riaz
  • Muhammad Bilal Tahir
  • Ghulam Nabi
  • Muhammad Abrar
  • Sumera Afsheen


Effect of different gold (Au) grating structures on light absorption in solar cell is investigated by finite elemental analysis using COMSOL multiphysics-RF module. The geometry of the solar cell consists of a 50-nm Au film on the substrate of amorphous silicon (a-Si). An optimum value of the slit width (w) of the Au grating has been obtained whereas periodicity of the grating structure remained the same. The periodicity in the grating device was chosen in such a way that the excitation of the surface plasmon polritons (SPPs) lies in the IR or NIR region where most of the spectrometers work well in practical life. Far-field transmission spectra were extracted from the grating device when illuminating with p-polarized light through the substrate side. Near-field plots of the Fano resonance (dip) associated with the excitation of the surface plasmon polritons (SPPs) were carefully examined to understand the underlying physics. It was deduced from the results that a grating device with slit width of 250–350 nm is the most efficient which reveals the fact that such device offers intermediate scattering from the grating structure and supports fundamental plasmonic mode. Hence, such devices absorb more light being most efficiently and find application in solar cell.


Surface plasmon polaritons (SPPs) Slit width Coupling efficiency Near-field and far-field analyses Thin film solar cell 


  1. 1.
    Furlan J et al. (1989) a-Si versus c-Si material and solar cells similarities and differences. In Electrotechnical Conference. Proceedings. ‘Integrating Research, Industry and Education in Energy and Communication Engineering’, MELECON’89. Mediterranean. 1989. IEEEGoogle Scholar
  2. 2.
    Rao J, Varlamov S (2013) Light trapping in thin film polycrystalline silicon solar cell using diffractive gratings. Energy Procedia 33:129–136CrossRefGoogle Scholar
  3. 3.
    Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93(12):121904CrossRefGoogle Scholar
  4. 4.
    Pala RA, White J, Barnard E, Liu J, Brongersma ML (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21(34):3504–3509CrossRefGoogle Scholar
  5. 5.
    Shen H, Maes B (2011) Combined plasmonic gratings in organic solar cells. Opt Express 19(106):A1202–A1210CrossRefGoogle Scholar
  6. 6.
    Thio T, Ghaemi HF, Lezec HJ, Wolff PA, Ebbesen TW (1999) Surface-plasmon-enhanced transmission through hole arrays in Cr films. JOSA B 16(10):1743–1748CrossRefGoogle Scholar
  7. 7.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213CrossRefGoogle Scholar
  8. 8.
    Raether H (1988) Surface plasmons on smooth surfaces, in Surface plasmons on smooth and rough surfaces and on gratings. Springer, p 4–39Google Scholar
  9. 9.
    Iqbal T (2015) Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating. Curr Appl Phys 15(11):1445–1452CrossRefGoogle Scholar
  10. 10.
    Iqbal T, Afsheen S (2016) Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling. Plasmonics 11(5):1247–1256CrossRefGoogle Scholar
  11. 11.
    Palik ED (1984) Handbook of optical-constants, p 1Google Scholar
  12. 12.
    Adachi S (2013) Optical-constants of crystalline and amorphous. SemiconductorsGoogle Scholar
  13. 13.
    Sommerfeld A (1899) Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes. Ann Phys 303(2):233–290CrossRefGoogle Scholar
  14. 14.
    Zenneck J (1907) Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann Phys 328(10):846–866CrossRefGoogle Scholar
  15. 15.
    Vempati S, Iqbal T, Afsheen S (2015) Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J Appl Phys 118(4):043103CrossRefGoogle Scholar
  16. 16.
    Javaid M, Iqbal T (2016) Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics 11(1):167–173CrossRefGoogle Scholar
  17. 17.
    Koev ST, Agrawal A, Lezec HJ, Aksyuk VA (2012) An efficient large-area grating coupler for surface plasmon polaritons. Plasmonics 7(2):269–277CrossRefGoogle Scholar
  18. 18.
    Iqbal T, Afsheen S (2016) Extraordinary optical transmission: role of the slit width in 1D metallic grating on higher refractive index substrate. Curr Appl Phys 16(4):453–458CrossRefGoogle Scholar
  19. 19.
    Iqbal T, Afsheen S (2017) One dimensional plasmonic grating: high sensitive biosensor. Plasmonics 12(1):19–25CrossRefGoogle Scholar
  20. 20.
    Billaudeau C, Collin S, Pardo F, Bardou N, Pelouard JL (2009) Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides. Opt Express 17(5):3490–3499CrossRefGoogle Scholar
  21. 21.
    Ye Y, Zhenxi Z, Dazong J (1997) Numerical calculation of MIE scattering. J Appl Optics 4:003Google Scholar
  22. 22.
    Iqbal T, Afsheen S (2016) Plasmonic band gap: role of the slit width in 1D metallic grating on higher refractive index substrate. Plasmonics 11(3):885–893CrossRefGoogle Scholar
  23. 23.
    Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298CrossRefGoogle Scholar
  24. 24.
    Genet C, van Exter MP, Woerdman J (2003) Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt Commun 225(4–6):331–336CrossRefGoogle Scholar
  25. 25.
    Worthing P, Barnes WL (2001) Efficient coupling of surface plasmon polaritons to radiation using a bi-grating. Appl Phys Lett 79(19):3035–3037CrossRefGoogle Scholar
  26. 26.
    Moreland J, Adams A, Hansma PK (1982) Efficiency of light emission from surface plasmons. Phys Rev B 25(4):2297–2300CrossRefGoogle Scholar
  27. 27.
    Iqbal T (2017) Coupling efficiency of surface plasmon polaritons: far-and near-field analyses. Plasmonics 12(1):215–221CrossRefGoogle Scholar
  28. 28.
    Romanato F, Ongarello T, Zacco G, Garoli D, Zilio P, Massari M (2011) Extraordinary optical transmission in one-dimensional gold gratings: near-and far-field analysis. Appl Opt 50(22):4529–4534CrossRefGoogle Scholar
  29. 29.
    Cao Q, Lalanne P (2002) Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett 88(5):057403CrossRefGoogle Scholar
  30. 30.
    Rosengart E-H, Pockrand I (1977) Influence of higher harmonics of a grating on the intensity profile of the diffraction orders via surface plasmons. Opt Lett 1(6):194–195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of Gujrat, Hafiz Hayat CampusGujratPakistan
  2. 2.Department of PhysicsUniversity of HazaraMansheraPakistan
  3. 3.Department of Zoology, Faculty of ScienceUniversity of Gujrat, Hafiz Hayat CampusGujratPakistan

Personalised recommendations