Advertisement

Plasmonics

, Volume 14, Issue 1, pp 139–146 | Cite as

Polarization-Insensitive Ultra-Narrow Plasmon-Induced Transparency and Short-range Surface Plasmon Polariton Bloch Wave in Ultra-thin Metallic Film Nanostructures

  • Jie-Tao LiuEmail author
  • Hai-Feng Hu
  • Xiao-Peng Shao
Article
  • 90 Downloads

Abstract

We demonstrate that polarization-insensitive ultra-narrow double plasmon-induced transparency (PIT) can be achieved in the thin-metal-film nanostructures. Ultra-narrow PIT resonance with a bandwidth of 2.5 nm at central wavelength of 768 nm was obtained (~ 1/307 of the peak wavelength). Multispectral PIT can be obtained, and its linewidth and the “on-off” state of the PIT peaks in the system can be adjusted by the metallic nanostructure thickness and particularly the waveguide layer thickness. The narrow transparency window is exhibited to be generated by the coupling and interference between a delocalized hybrid-waveguide photonics mode and the localized surface plasmon (LSP) mode. The angular-dependent dispersion of the system with double PITs is examined and investigated, where the high-order short-range surface plasmon polariton (SRSPP) Bloch waves excited for large incidence angles are indicated and revealed. The multispectral PITs with high quality in the large-area plasmonic system are promising for practical and compact nanophotonics applications such as optical buffers, ultra-sensitive sensor, plasmonic filters, and switches.

Keywords

Plasmon-induced transparency Thin-metal-film nanostructures Surface plasmon polaritons 

Notes

Funding Information

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11704299) and by the 111 project (B17035).

References

  1. 1.
    Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77:633–673CrossRefGoogle Scholar
  2. 2.
    Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401CrossRefGoogle Scholar
  3. 3.
    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2009) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107CrossRefGoogle Scholar
  4. 4.
    Yannopapas V, Paspalakis E, Vitanov NV (2009) Electromagnetically induced transparency and slow light in an array of metallic nanoparticles. Phys Rev B 80:035104CrossRefGoogle Scholar
  5. 5.
    Zentgraf T, Zhang S, Oulton RF, Zhang X (2009) Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems. Phys Rev B 80:195415CrossRefGoogle Scholar
  6. 6.
    Yang Y, Kravchenko II, Briggs DP, Valentine J (2014) All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun 5:6753Google Scholar
  7. 7.
    Zhang J, Bai WL, Cai LK, Xu Y, Song GF, Gan QQ (2011) Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems. Appl Phys Lett 99:181120CrossRefGoogle Scholar
  8. 8.
    Artar A, Yanik AA, Altug H (2011) Multispectral plasmon induced transparency in coupled meta-atoms. Nano Lett 11:1685–1689CrossRefGoogle Scholar
  9. 9.
    Miyata M, Hirohata J, Nagasaki Y, Takahara J (2014) Multi-spectral plasmon induced transparency via in-plane dipole and dual-quadrupole coupling. Opt Express 22:11399–11406CrossRefGoogle Scholar
  10. 10.
    Chen J, Wang C, Zhang R, Xiao J (2012) Multiple plasmon-induced transparencies in coupled-resonator systems. Opt Lett 37:5133–5135CrossRefGoogle Scholar
  11. 11.
    Lu H, Liu XM, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85:053803CrossRefGoogle Scholar
  12. 12.
    Hokmabadi MP, Philip E, Rivera E, Kung P, Kim SM (2015) Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators. Sci Rep 5:15735CrossRefGoogle Scholar
  13. 13.
    Duan X, Chen S, Yang H, Cheng H, Li J, Liu W, Gu C, Tian J (2012) Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials. Appl Phys Lett 101:143105CrossRefGoogle Scholar
  14. 14.
    Liu J, Xu B, Hu H, Zhang J, Wei X, Xu Y, Song G (2013) Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system. Opt Express 21:13386–13393CrossRefGoogle Scholar
  15. 15.
    Lee S-G, Kim S-H, Kim K-J, Kee C-S (2017) Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures. Appl Phys Lett 110:111106CrossRefGoogle Scholar
  16. 16.
    Palik ED (1985) Handbook of optical constants of solids. Academic PressGoogle Scholar
  17. 17.
    Liu J, Xu B, Zhang J, Song G (2013) Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit. Plasmonics 1–7Google Scholar
  18. 18.
    Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104:243902CrossRefGoogle Scholar
  19. 19.
    Peng B, Özdemir ŞK, Chen W, Nori F, Yang L (2014) What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat Commun 5:5082CrossRefGoogle Scholar
  20. 20.
    Zhan SP, Li HJ, Cao GT, He ZH, Li BX, Xu H (2014) Theoretical analysis of plasmon-induced transparency in ring-resonators coupled channel drop filter systems. Plasmonics 9:1431–1437CrossRefGoogle Scholar
  21. 21.
    Linden S, Christ A, Kuhl J, Giessen H (2001) Selective suppression of extinction within the plasmon resonance of gold nanoparticles. Appl Phys B Lasers Opt 73:311–316CrossRefGoogle Scholar
  22. 22.
    Christ A, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2003) Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett 91:183901CrossRefGoogle Scholar
  23. 23.
    Christ A, Zentgraf T, Kuhl J, Tikhodeev SG, Gippius NA, Giessen H (2004) Optical properties of planar metallic photonic crystal structures: experiment and theory. Phys Rev B 70:125113CrossRefGoogle Scholar
  24. 24.
    Ahmadivand A, Sinha R, Gerislioglu B, Karabiyik M, Pala N, Shur M (2016) Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies. Opt Lett 41(22):5333–5336CrossRefGoogle Scholar
  25. 25.
    Klar T, Perner M, Grosse S, von Plessen G, Spirkl W, Feldmann J (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80(19):4249–4252CrossRefGoogle Scholar
  26. 26.
    Christ A, Zentgraf T, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2006) Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations. Phys Rev B 74:155435CrossRefGoogle Scholar
  27. 27.
    Kravets VG, Schedin F, Grigorenko AN (2008) Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys Rev Lett 101:087403CrossRefGoogle Scholar
  28. 28.
    Braun J, Gompf B, Weiss T, Giessen H, Dressel M, Hübner U (2011) Optical transmission through subwavelength hole arrays in ultrathin metal films. Phys Rev B 84:155419CrossRefGoogle Scholar
  29. 29.
    Braun J, Gompf B, Kobiela G, Dressel M (2009) How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Phys Rev Lett 103:203901CrossRefGoogle Scholar
  30. 30.
    Gan QQ, Bai WL, Jiang SH, Gao YK, Li WD, Wu W, Bartoli FJ (2012) Short-range surface plasmon polaritons for extraordinary low transmission through ultra-thin metal films with nanopatterns. Plasmonics 7:47–52CrossRefGoogle Scholar
  31. 31.
    Huang C-p, Wang Q-j, Zhu Y-y (2007) Dual effect of surface plasmons in light transmission through perforated metal films. Phys Rev B 75:245421CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic EngineeringXidian UniversityXi’anChina
  2. 2.College of Information Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations