Advertisement

Plasmonics

, Volume 14, Issue 1, pp 133–138 | Cite as

Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots

  • Jinyu Luan
  • Meiyong Fan
  • Pengfei Zheng
  • Huimin Yang
  • Guohua Hu
  • Binfeng YunEmail author
  • Yiping CuiEmail author
Article
  • 153 Downloads

Abstract

Graphene modulators based on surface plasmonic waveguides enable a strong interaction between light and graphene because great electric field enhancement occurs in the sub-wavelength region. However, a tight field confinement will cause a large metal absorption of light. Thus, graphene modulator base on hybrid plasmonic waveguide has a tradeoff between the propagation loss and the modulation depth. Here, we achieved a good balance between them by designing and optimizing an electro-optic modulator based on hybrid plasmonic waveguide with four graphene layers. The structure of the waveguide is metal/insulator/Si/insulator/metal. The modulation depth and the propagation loss of the modulator are 0.524 and 0.05 dB/μm respectively, which make a relatively high figure of merit about 10.5. Also the obtained modulation bandwidth and power consumption are 150 GHz and 0.607 pJ/bit, respectively.

Keywords

Graphene Hybrid Plasmonic waveguide Modulator 

Notes

Funding

This work was supported by the National Science Foundation of Jiangsu Province Grant No. BK 20161429.

References

  1. 1.
    Marris-Morini D et al (2009) Recent progress in high-speed silicon-based optical modulators. Proc IEEE 97(7):1199–1215CrossRefGoogle Scholar
  2. 2.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  3. 3.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308CrossRefGoogle Scholar
  4. 4.
    Mak KF, Sfeir MY, Wu Y, Lui CH, Misewich JA, Heinz TF (2008) Measurement of the optical conductivity of graphene. Phys Rev Lett 101(19):196405CrossRefGoogle Scholar
  5. 5.
    Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355CrossRefGoogle Scholar
  6. 6.
    Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495CrossRefGoogle Scholar
  7. 7.
    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474(7349):64–67CrossRefGoogle Scholar
  8. 8.
    Liu M, Yin X, Zhang X (2012) Double-layer graphene optical modulator. Nano Lett 12(3):1482–1485CrossRefGoogle Scholar
  9. 9.
    Kovacevic G, Yamashita S (2016) Design optimizations for a high-speed two-layer graphene optical modulator on silicon. IEICE Electron Expr 13(14):1–11CrossRefGoogle Scholar
  10. 10.
    Phare CT, Lee YHD, Cardenas J, Lipson M (2015) Graphene electro-optic modulator with 30 GHz bandwidth. Nat Photonics 9(8):511–515CrossRefGoogle Scholar
  11. 11.
    Ye S, Wang Z, Tang L, Zhang Y, Lu R, Liu Y (2014) Electro-absorption optical modulator using dual-graphene-on-graphene configuration. Opt Express 22(21):26173–26180CrossRefGoogle Scholar
  12. 12.
    Ma Z, Tahersima M, Khan S, Sorger VJ (2017) 2D material-based mode confinement engineering in electro-optic modulators. IEEE J Sel Top Quant 23(1):3400208Google Scholar
  13. 13.
    Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi SI, Oxenløwe LK, Jin KJ, Mortensen NA, Xiao S (2017) Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale 9(40):15576–15581CrossRefGoogle Scholar
  14. 14.
    Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500CrossRefGoogle Scholar
  15. 15.
    Guan X, Hao WU, Dai D (2014) Silicon hybrid nanoplasmonics for ultra-dense photonic integration. Front Optoelectron 7(3):300–319CrossRefGoogle Scholar
  16. 16.
    Kwon MS (2017) Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide. IEEE Photonics J 6(3):1–9CrossRefGoogle Scholar
  17. 17.
    Lee CC, Suzuki S, Xie W, Schibli TR (2012) Broadband graphene electro-optic modulators with sub-wavelength thickness. Opt Express 20(5):5264–5269CrossRefGoogle Scholar
  18. 18.
    Fan M, Yang H, Zheng P, Hu G, Yun B, Cui Y (2017) Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide. Opt Express 25(18):21619–21629CrossRefGoogle Scholar
  19. 19.
    Shiramin LA, Thourhout DV (2017) Graphene modulators and switches integrated on silicon and silicon nitride waveguide. IEEE J Sel Top Quant 23(1):3600107Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Photonics CenterSoutheast UniversityNanjingChina

Personalised recommendations