, Volume 14, Issue 1, pp 125–131 | Cite as

Luminescence Enhancement and SERS by Self-Assembled Plasmonic Silver Nanostructures in Nanoporous Glasses

  • Alisa S. Pshenova
  • Alexander I. SidorovEmail author
  • Tatiana V. Antropova
  • Aleksey V. Nashchekin


It was shown experimentally that the action of continuous electric field on nanoporous silicate glasses with interconnecting pores, containing silver nanoparticles, leads to the spatial redistribution of nanoparticles. The concentration of nanoparticles near the negative electrode increases and results in silver nano- and microdendrite structure growth. The main mechanisms of the described effects are the field emission of silver ions from silver nanoparticles near negative electrode, migration of silver ions in the external electric field to the negative electrode, reduction of silver ions by free electrons, and new silver nanoparticle formation. The experiments have shown that at the ends of microdendrites, local field enhancement appears, which results in luminescence enhancement and in SERS.


Silver Plasmonic nanostructure Self-assembling Nanoporous glass Luminescence SERS 



Nanoporous glasses were synthesized in Grebenschikov Institute of Silicates Chemistry RAS, according to State Assignment (#0097-2015-0021). SEM characterizations were performed using equipment owned by the Joint Research Center “Material science and characterization in advanced technology” (#RFMEFI62117X0018).

Funding Information

This work was financially supported by the Ministry of Education and Science of Russian Federation for the task # 16.1651.2017/4.6.


  1. 1.
    Klimov V, Sharonova A (2014) Nanoplasmonics. Pan Stanford Publishing, SingaporeCrossRefGoogle Scholar
  2. 2.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, New YorkCrossRefGoogle Scholar
  3. 3.
    Eichelbaum M, Rademann K (2009) Plasmonic enhancement or energy transfer? On the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices. Adv Funct Mater 19:2045–2052CrossRefGoogle Scholar
  4. 4.
    Chen Y, Jaakola JJ, Säynätjoki A, Tervonen A, Honkanen S (2011) Glass-embedded silver nanoparticle patterns by masked ion-exchange process for surface-enhanced Raman scattering. J Raman Spectrosc 42:936–940CrossRefGoogle Scholar
  5. 5.
    Stockman MI (2006) Electromagnetic theory of SERS. In: Kneipp K, Moskovits M, Kneipp H (eds) Surface-enhanced Raman scattering. Springer, New YorkGoogle Scholar
  6. 6.
    Nikonorov NV, Sidorov AI, Tsekhomskii VA (2010) Silver nanoparticles in oxide glasses: technologies and properties. In: Perez DP (ed) Silver nanoparticles. InTech, VukovarGoogle Scholar
  7. 7.
    Sarychev AK, Shalaev VM (1999) Giant high-order field moments in metal-dielectric films. Phys A 266:115–122CrossRefGoogle Scholar
  8. 8.
    Stockman MI (2015) Nanoplasmonic sensing and detection. Science 348:287–288CrossRefGoogle Scholar
  9. 9.
    Stockman MI (2014) Nanoplasmonics: fundamentals and applications. In: Di Bartolo B, Collins J, Silvestri L (eds) Nano-structures for optics and photonics. Springer, New YorkGoogle Scholar
  10. 10.
    Kreisberg VA, Antropova TV (2014) Changing the relation between micro- and mesoporosity in porous glasses: the effect of different factors. Microporous Mesoporous Mater 190:128–138CrossRefGoogle Scholar
  11. 11.
    Doycho IK, Gevelyuk SA, Ptashchenko OO, Rysiakiewicz-Pasek E, Tolmachova TM, Tyurin OV, Zhukov SO (2010) Photoluminescence features of AgBr nanoparticles formed in porous glass matrices. Opt Appl 40:323Google Scholar
  12. 12.
    Rysiakiewicz-Pasek E, Polanska J, Gevelyuk SA, Doycho IK, Mak VT, Zhukov SA (2008) The photoluminescent properties of CdS clusters of different size in porous glasses. Opt Appl 38:93Google Scholar
  13. 13.
    Ovechko V, Schur O, Mygashko V (2008) Optical properties of the porous glass composite material. Opt Appl 38:75Google Scholar
  14. 14.
    Sidorov AI, Vinogradova OP, Obyknovennaya IE, Khrushchova TA (2007) Synthesis and optical properties of vanadium dioxide nanoparticles in nanoporous glasses. Tech Phys Lett 33:581–582CrossRefGoogle Scholar
  15. 15.
    Vinogradova OP, Obyknovennaya IE, Sidorov AI, Klimov VA, Shadrin EB, Khanin SD, Khrushcheva TA (2008) Synthesis and the properties of vanadium dioxide nanocrystals in porous silicate glasses. Phys Solid State 50:768–774CrossRefGoogle Scholar
  16. 16.
    Tervonen A, West BR, Honkanen S (2011) Ion-exchanged glass waveguide technology: a review. Opt Eng 50:071107CrossRefGoogle Scholar
  17. 17.
    Tervonen A, Honkanen S, Leppihalme M (1987) Control of ion-exchanged waveguide profiles with Ag thin-film sources. J Appl Phys 62:759–763CrossRefGoogle Scholar
  18. 18.
    Deparis O, Kazansky PG, Abdolvand A, Podlipensky A, Seifert G, Graener H (2004) Poling-assisted bleaching of metal-doped nanocomposite glass. Appl Phys Lett 85:872–874CrossRefGoogle Scholar
  19. 19.
    Podlipensky A, Abdolvand A, Seifert G, Graener H, Deparis O, Kazansky PG (2004) Dissolution of silver nanoparticles in glass through an intense dc electric field. J Phys Chem B 108:17699CrossRefGoogle Scholar
  20. 20.
    Lipovskii AA, Melehin VG, Petrikov VD (2006) Electric-field-induced bleaching of ion-exchanged glasses containing copper nanoparticles. Tech Phys Lett 32:275–277CrossRefGoogle Scholar
  21. 21.
    Andreyuk A, Albert J (2014) Field-assisted patterned dissolution of silver nanoparticles in phosphate glass. J Appl Phys 116:113106CrossRefGoogle Scholar
  22. 22.
    Chervinskii S, Reduto I, Kamenskii A, Mukhin IS, Lipovskii AA (2016) 2D-patterning of self-assembled silver nanoisland films. Faraday Discuss 186:107–121CrossRefGoogle Scholar
  23. 23.
    Sidorov AI, Nashchekin AV, Nevedomskiy VN, Usov OA, Podsvirov OA (2011) Self-assembling of silver nanoparticles in glasses under electron beam irradiation. Int J Nanosci 10:41CrossRefGoogle Scholar
  24. 24.
    Ignatiev AI, Nashchekin AV, Nevedomskii VM, Podsvirov OA, Sidorov AI, Solov’ev AP, Usov OA (2011) Formation of silver nanoparticles in photothermorefractive glasses during electron irradiation. Tech Phys 56:662–667CrossRefGoogle Scholar
  25. 25.
    Sidorov AI, Prosnikov MA, Boricheva IK (2015) Effect of electron irradiation on the size and concentration of silver nanoparticles on the surface of silicate glass. Tech Phys 60:1872–1876CrossRefGoogle Scholar
  26. 26.
    Feder J (1988) Fractals. Plenum Press, New YorkCrossRefGoogle Scholar
  27. 27.
    Ozin GA, Hugues F (1983) Silver atoms and small silver clusters stabilized in zeolite Y: optical spectroscopy. J Phys Chem 87:94–97CrossRefGoogle Scholar
  28. 28.
    Ozin GA, Huber H (1978) Cryophotoclustering techniques for synthesizing very small, naked silver clusters Agn of known size (where n = 2-5). The molecular metal cluster-bulk metal particle interface. Inorg Chem 17:155–163CrossRefGoogle Scholar
  29. 29.
    Fedrigo S, Harbich W, Buttet J (1993) Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. Phys Rev B 47:10706CrossRefGoogle Scholar
  30. 30.
    Félix C, Sieber C, Harbich W, Buttet J, Rabin I, Schulze W, Ertl G (1999) Fluorescence and excitation spectra of Ag4 in an argon matrix. Chem Phys Lett 313:105–109CrossRefGoogle Scholar
  31. 31.
    Dubrovin VD, Ignatiev AI, Nikonorov NV, Sidorov AI, Shakhverdov TA, Agafonova DS (2014) Luminescence of silver molecular clusters in photo-thermo-refractive glasses. Opt Mater 36:753–759CrossRefGoogle Scholar
  32. 32.
    Pshenova AS, Klyukin DA, Nashchekin AV, Sidorov AI (2017) Migration of silver on the nanoporous glasses surface under the action of an electric field. Appl Opt 56:2821–2825CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alisa S. Pshenova
    • 1
  • Alexander I. Sidorov
    • 1
    Email author
  • Tatiana V. Antropova
    • 2
  • Aleksey V. Nashchekin
    • 3
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Grebenschikov Institute of Silicates Chemistry RASSt. PetersburgRussia
  3. 3.Ioffe Physical-Technical Institute, RASSt. PetersburgRussia

Personalised recommendations