, Volume 14, Issue 1, pp 53–62 | Cite as

Design of a Single-Mode Plasmonic Bandpass Filter Using a Hexagonal Resonator Coupled to Graded-Stub Waveguides

  • Shiva Khani
  • Mohammad DanaieEmail author
  • Pejman Rezaei


In this paper, a plasmonic filter based on metal-insulator-metal (MIM) configuration is proposed. It uses a hexagonal nano-resonator (HNR) coupled to multi-stub waveguides (MSWs) from both sides. The metal and insulator of the proposed plasmonic filter are silver and air, respectively. Finite difference time domain (FDTD) method is used for numerical simulations. The simulation results indicate that the proposed filter has a single transmission peak at 987 nm with a maximum transmission equal to 67%. The advantages of the proposed structure are a resonance wavelength with high transmission peak and flat transmission spectrum out of the transmission resonance wavelength. The Drude–Lorentz model (DLM) is used for numerical characterization of silver in the proposed structure. Such a model is thereafter compared with Drude and Palik models. To investigate the effect of different structural parameters of HNR and multiple stubs on their transmission spectrums, such structures are simulated by sweeping different parameters. Considering these features, the proposed filter has the potential to be employed in various plasmonic devices such as demultiplexers for optical communication purposes.


Plasmonic filter Optical resonator Metal-insulator-metal (MIM) waveguide Bandpass filter (BPF) Drude–Lorentz model (DLM) Finite difference time domain (FDTD) method 


  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830CrossRefGoogle Scholar
  2. 2.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media, New YorkGoogle Scholar
  3. 3.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91CrossRefGoogle Scholar
  4. 4.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511CrossRefGoogle Scholar
  5. 5.
    Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nano-disk resonators. Opt Express 18(17):17922–17927CrossRefGoogle Scholar
  6. 6.
    Zhan G, Liang R, Liang H, Luo J, Zhao R (2014) Asymmetric band-pass plasmonic nano-disk filter with mode inhibition and spectrally splitting capabilities. Opt Express 22(8):9912–9919CrossRefGoogle Scholar
  7. 7.
    Ghorbanian A, Kashani AM, Javan AM (2016) The effects of silver slabs in nano-disk resonator of plasmonic tunable band-pass filter. Optik 127(4):1884–1888CrossRefGoogle Scholar
  8. 8.
    Chen Z, Chen J, Li Y, Qian J, Qi J, Xu J, Sun Q (2013) Highly efficient narrow-band plasmonic waveguide filter based on cascaded slot cavities. Chin Opt Lett 11(11):112401Google Scholar
  9. 9.
    Ce S, Zhao C, Lu-Lu W, Yu-Fang Z, Gao-Yan D, Li Y (2014) Characteristics of the coupled-resonator structure based on a stub resonator and a nano-disk resonator. Chin Opt Lett 31(11):114202Google Scholar
  10. 10.
    Dolatabady A, Granpayeh N (2015) L-shaped filter, mode separator and power divider based on plasmonic waveguides with nanocavity resonators. IET Optoelectron 9(6):289–293CrossRefGoogle Scholar
  11. 11.
    Dolatabady A, Granpayeh N, Nezhad VF (2013) A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nano-disk resonator. Opt Commun 300:265–268CrossRefGoogle Scholar
  12. 12.
    Zheng G, Xu L, Liu Y (2016) Tunable plasmonic filter with circular metal–insulator–metal ring resonator containing double narrow gaps. Pramana 86(5):1091–1097CrossRefGoogle Scholar
  13. 13.
    Liu B, Liu YF, Li SJ, He XD (2016) Rotation and conversion of transmission mode based on a rotatable elliptical core ring resonator. Opt Commun 369:44–49CrossRefGoogle Scholar
  14. 14.
    Yun B, Hu G, Cui Y (2013) Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity. Plasmonics 8(2):267–275CrossRefGoogle Scholar
  15. 15.
    Bavil MA, Gao L, Sun X (2013) A compact nanoplasmonics filter and intersection structure based on utilizing a slot cavity and a Fabry–Perot resonator. Plasmonics 8(2):631–636CrossRefGoogle Scholar
  16. 16.
    Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876CrossRefGoogle Scholar
  17. 17.
    Wang H, Yang J, Zhang J, Huang J, Wu W, Chen D, Xiao G (2016) Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure. Opt Lett 41(6):1233–1236CrossRefGoogle Scholar
  18. 18.
    Zhai X, Wang L, Wang LL, Li XF, Huang WQ, Wen SC, Fan DY (2013) Tuning bandgap of a double-tooth-shaped MIM waveguide filter by control widths of the teeth. J Opt 15(5):055008CrossRefGoogle Scholar
  19. 19.
    Cui L, Song G, Yu L, Lang P, Xiao J (2013) Tunable band-stop plasmonic filter based on symmetrical tooth-shaped waveguide couples. Mod Phys Lett B 27(14):1350101Google Scholar
  20. 20.
    Lu H, Liu X, Wang G, Mao D (2012) Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology 23(44):444003CrossRefGoogle Scholar
  21. 21.
    Guo J (2014) Plasmon-induced transparency in metal–insulator–metal waveguide side-coupled with multiple cavities. Appl Opt 53(8):1604–1609CrossRefGoogle Scholar
  22. 22.
    Liu D, Sun Y, Fan Q, Mei M, Wang J, Pan YW, Lu J (2016) Tunable plasmonically induced transparency with asymmetric multi-rectangle resonators. Plasmonics 11(6):1621–1628CrossRefGoogle Scholar
  23. 23.
    Zheng GG, Xu LH, Liu YZ, Su W (2015) Optical filter and sensor based on plasmonic-gap-waveguide coupled with T-shaped resonators. Optik 126(23):4056–4060CrossRefGoogle Scholar
  24. 24.
    Qi J, Chen Z, Chen J, Li Y, Qiang W, Xu J, Sun Q (2014) Independently tunable double Fano resonances in asymmetric MIM waveguide structure. Opt Express 22(12):14688–14695CrossRefGoogle Scholar
  25. 25.
    Guo Y, Yan L, Pan W, Luo B, Wen K, Guo Z, Luo X (2013) Characteristics of plasmonic filters with a notch located along rectangular resonators. Plasmonics 8(2):167–171CrossRefGoogle Scholar
  26. 26.
    Wu C, Song G, Yu L, Xiao J (2013) Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal–insulator–metal waveguide. J Mod Opt 60(15):1217–1222CrossRefGoogle Scholar
  27. 27.
    Chen Z, Li H, Li B, He Z, Xu H, Zheng M, Zhao M (2016) Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system. Appl Phys Express 9(10):102002CrossRefGoogle Scholar
  28. 28.
    Wang J, Niu Y, Liu D, Hu ZD, Sang T, Gao S (2018) Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system. Plasmonics 13(2):609–616Google Scholar
  29. 29.
    Rakhshani MR, Mansouri-Birjandi MA (2016) High-sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity. IEEE Sensors J 16(9):3041–3046CrossRefGoogle Scholar
  30. 30.
    Wu C, Ding H, Huang T, Wu X, Chen B, Ren K, Fu S (2018) Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators. Plasmonics 13(1):251–257CrossRefGoogle Scholar
  31. 31.
    Xie Y, Huang Y, Xu W, Zhao W, He C (2016) A plasmonic temperature-sensing structure based on dual laterally side-coupled hexagonal cavities. Sensors 16(5):706CrossRefGoogle Scholar
  32. 32.
    Li B, Li H, Zeng L, Zhan S, He Z, Chen Z, Xu H (2016) Filtering and sensing properties based on metal-dielectric-metal waveguide with slot cavities. J Mod Opt 63(14):1378–1383CrossRefGoogle Scholar
  33. 33.
    Luo S, Li B, Xiong D, Zuo D, Wang X (2017) A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure. Plasmonics 12(2):223–227CrossRefGoogle Scholar
  34. 34.
    Rakhshani MR, Mansouri-Birjandi MA (2017) Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application. Plasmonics 12(4):999–1006CrossRefGoogle Scholar
  35. 35.
    Rakhshani MR, Mansouri-Birjandi MA (2017) High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sensors Actuators B Chem 249:168–176CrossRefGoogle Scholar
  36. 36.
    Xie YY, He C, Li JC, Song TT, Zhang ZD, Mao QR (2016) Theoretical investigation of a plasmonic demultiplexer in MIM waveguide crossing with multiple side-coupled hexagonal resonators. IEEE Photonics Journal 8(5):1–12CrossRefGoogle Scholar
  37. 37.
    Rakhshani MR, Mansouri-Birjandi MA (2016) Dual wavelength demultiplexer based on metal–insulator–metal plasmonic circular ring resonators. J Mod Opt 63(11):1078–1086CrossRefGoogle Scholar
  38. 38.
    Azar MT, Zavvari M, Arashmehr A, Zehforoosh Y, Mohammadi P (2017) Design of a high-performance metal–insulator–metal plasmonic demultiplexer. Journal of Nanophotonics 11(2):026002CrossRefGoogle Scholar
  39. 39.
    Hu F, Yi H, Zhou Z (2011) Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Lett 36(8):1500–1502CrossRefGoogle Scholar
  40. 40.
    Hu F, Zhou Z (2011) Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities. JOSA B 28(10):2518–2523CrossRefGoogle Scholar
  41. 41.
    Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder DL et al (2015) All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics 9(8):525–528CrossRefGoogle Scholar
  42. 42.
    Taheri AN, Kaatuzian H (2015) Numerical investigation of a nano-scale electro-plasmonic switch based on metal-insulator-metal stub filter. Opt Quant Electron 47(2):159–168CrossRefGoogle Scholar
  43. 43.
    Nozhat N, Granpayeh N (2014) All-optical nonlinear plasmonic ring resonator switches. J Mod Opt 61(20):1690–1695CrossRefGoogle Scholar
  44. 44.
    Guo Y, Yan L, Pan W, Luo B, Wen K, Guo Z, Luo X (2011) A plasmonic splitter based on slot cavity. Opt Express 19(15):13831–13838CrossRefGoogle Scholar
  45. 45.
    He MD, Liu JQ, Gong ZQ, Luo YF, Chen X, Lu W (2010) Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves. Opt Commun 283(9):1784–1787CrossRefGoogle Scholar
  46. 46.
    Xiang D, Li W (2014) MIM plasmonic waveguide splitter with tooth-shaped structures. J Mod Opt 61(3):222–226CrossRefGoogle Scholar
  47. 47.
    Liu T, Wang S (2016) Nanoscale plasmonic coupler with tunable direction and intensity ratio controlled by optical vortex. J Appl Phys 120(12):123108CrossRefGoogle Scholar
  48. 48.
    Magno G, Grande M, Petruzzelli V, D’Orazio A (2013) Numerical analysis of the coupling mechanism in long-range plasmonic couplers at 1.55 μm. Opt Lett 38(1):46–48CrossRefGoogle Scholar
  49. 49.
    Li HY, Zhou SM, Li J, Chen YL, Wang SY, Shen ZC, Zhang XX (2001) Analysis of the Drude model in metallic films. Appl Opt 40(34):6307–6311CrossRefGoogle Scholar
  50. 50.
    Palik ED (ed) (1998) Handbook of optical constants of solids. Academic Press, San Diego Google Scholar
  51. 51.
    Khani S, Danaie M, Rezaei P (2018) Realization of single-mode plasmonic bandpass filters using improved nano-disk resonators. Opt Commun 420:147–156CrossRefGoogle Scholar
  52. 52.
    Setayesh A, Mirnaziry SR, Abrishamian MS (2011) Numerical investigation of tunable band-pass\band-stop plasmonic filters with hollow-core circular ring resonator. Journal of the Optical Society of Korea 15(1):82–89CrossRefGoogle Scholar
  53. 53.
    Setayesh A, Mirnaziry SR, Abrishamian MS (2011) Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator. J Opt 13(3):035004CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrical and Computer Engineering FacultySemnan UniversitySemnanIran

Personalised recommendations