, Volume 14, Issue 1, pp 41–52 | Cite as

Efficient Modulation of Multipolar Fano Resonances in Asymmetric Ring-Disk/Split-Ring-Disk Nanostructure

  • Jian Cui
  • Boyu Ji
  • Xiaowei SongEmail author
  • Jingquan LinEmail author


Generation of multiple Fano resonances are theoretically investigated in asymmetry ring-disk and asymmetry split-ring-disk. The effects of structural parameter on multiple Fano resonances are analyzed in detail, and it is found that the wavelength of multipole Fano resonances can be extensively and accurately controlled by changing the gap size and the relative offset between the ring/split-ring and disk in asymmetric ring-disk/split-ring-disk nanostructure. Simulation on scattering spectra of the asymmetric structure show that Fano dips generally exhibit redshift in resonant wavelength and simultaneously with a varied modulation depth as symmetry of the structure is further broken. The results of the near-field distribution and phase simulation disclose that multiple Fano resonances are caused by interference of dipolar bright mode of whole asymmetric structure with the combined high-order dark-dark modes, and the dip on the shorter resonant wavelength side corresponds to higher-order dark mode. Furthermore, it is found that the multiple Fano resonances of asymmetry ring-disk are polarization-independent. However, for the asymmetric split-ring-disk, resonances are sensitive to polarization angle and number of the dips can be switched on and off by tuning the polarization angle. The proposed asymmetric nanostructures could find wide applications in plasmon line shaping, multiband sensing, electromagnetic-induced transparency and many other fields.


Plasmons Multipolar Fano resonance Symmetry breaking Asymmetric ring-disk nanostructure Asymmetric split-ring-disk nanostructure 



The authors acknowledge the helpful discussion with Prof. Toshihisa Tomie at Changchun University of Science and Technology.

Funding Information

This project was supported by the National Natural Science Foundation of China under Grant Nos. 61775021, 11474040, 11474039, 61605017, and 61575030; Jilin Provincial Science and Technology Department 20170519018JH; and Jilin Provincial Education Department (JJKH20181104KJ) “111” Project of China (D17017).


  1. 1.
    Fang Z, Cai J, Nordlander P et al (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11(10):4475–4479CrossRefGoogle Scholar
  2. 2.
    Pena-Rodriguez O, Pal U, Campoy-Quiles M et al (2011) Enhanced Fano resonance in asymmetrical Au:Ag hererodimers. JPhysChem C 115(14):6410–6414Google Scholar
  3. 3.
    Wang J, Fan C, Ding P et al (2013) Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt Express 21(2):2236–2244CrossRefGoogle Scholar
  4. 4.
    Ji BY, Wang Q, Song XW et al (2017) Disclosing dark mode of femtosecond plasmon with photoemission electron microscopy. Journal of Physics D Applied Physics 16:035002Google Scholar
  5. 5.
    Wang W, Li Y, Peng J, Chen Z, Qian J, Chen J, Xu J, Sun Q (2014) Polarization dependent Fano resonance in a metallic triangle embedded in split ring plasmonic nanostructures. J Opt 16(3):035002CrossRefGoogle Scholar
  6. 6.
    Li J, Liu TZ, Zheng H et al (2014) Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking. Plasmonics 9(6):1439–1445CrossRefGoogle Scholar
  7. 7.
    Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Material 11(1):69–75CrossRefGoogle Scholar
  8. 8.
    Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor JH, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc Natl Acad Sci U S A 108(29):11784CrossRefGoogle Scholar
  9. 9.
    Ye J, Wen F, Sobhani H, Lassiter JB, van Dorpe P, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett 12(3):1660–1667CrossRefGoogle Scholar
  10. 10.
    Cui Y, Zhou J, Tamma VA, Park W (2012) Dynamic tuning and symmetry lowering of Fano resonances in plasmonic nanostructure. ACS Nano 6(3):2385–2393CrossRefGoogle Scholar
  11. 11.
    Adnan D, Giovanni M (2013) Plasmonic Fano resonances in single-layer gold conical nanoshells. Plasmonics 8(3):1429–1437CrossRefGoogle Scholar
  12. 12.
    Muhammad A, Adnan D (2015) Polarization selective electromagnetic-induced transparency in the disordered Plasmonic quasi-crystal structure. Phys Chem C 119(37)Google Scholar
  13. 13.
    Fu YH, Zhang JB, Yu YF et al (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. Nano Lett 6(6):5130–5137Google Scholar
  14. 14.
    Muhammad A, Amjad A, Khan SD et al (2015) Multiple higher-order Fano resonances in plasmonic hollow cylindrical nanodimer. Appl Phys A 120(2):641–649CrossRefGoogle Scholar
  15. 15.
    Adnan D, Muhammad A, Khan RU et al (2014) Generation of multiple Fano resonances in plasmonic split nanoring dimer. Plasmonics 9(5):1091–1102CrossRefGoogle Scholar
  16. 16.
    Koray A, Imogen M, Atwater H et al (2010) Symmetry breaking and strong coupling in planar optical metamaterials. Opt Express 18(13):13407–13417CrossRefGoogle Scholar
  17. 17.
    Liu N, Mukherjee S, Bao K, Brown LV, Dorfmüller J, Nordlander P, Halas NJ (2012) Magnetic plasmon formation and propagation in artificial aromatic molecules. Nano Lett 12(1):364–369CrossRefGoogle Scholar
  18. 18.
    A. Ahmadivand, R. Sinha, N. Pala, et al (2015) Graphene plasmonics: multiple sharp Fano resonances in silver split concentric nanoring/disk resonator dimmers on a metasurface. Spie Nanoscience + Engineering, 9547Google Scholar
  19. 19.
    Zarrabi BF, Moghadasi MN (2017) Investigated the Fano resonance in the nano ring arrangement. Optik 138:80–86CrossRefGoogle Scholar
  20. 20.
    Li N, Tian XJ, Zhang W, Luo L, Li G, Zhang Z (2015) Double Fano resonances in a planar pseudo-dolmen structure. Sensors Actuators A 234:346–350CrossRefGoogle Scholar
  21. 21.
    Chen JX, Wang P, Zhan QW et al (2011) Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Opt Express 19(7):5970–5978CrossRefGoogle Scholar
  22. 22.
    Chang WS, Lassiter J, Link S et al (2012) A plasmonic Fano switch. Nano Lett 12(9):4977–4982CrossRefGoogle Scholar
  23. 23.
    Liu SD, Zhang MJ, Wang WJ, Wang YC (2013) Tuning multiple Fano resonances in plasmonic pentamer clusters. Appl Phys Lett 102(13):133105CrossRefGoogle Scholar
  24. 24.
    Hao F, Nordlander P, Burnett MT, Maier SA (2007) Enhanced tenability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities. Phys Rev B 76(24):245417CrossRefGoogle Scholar
  25. 25.
    Ross BM, Lee LP (2008) Plasmon tuning and local field enhancement maximization of the nanocrescent. Nanotechnology 19(27):275201CrossRefGoogle Scholar
  26. 26.
    Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GAE, Moshchalkov VV, van Dorpe P, Nordlander P, Maier SA (2010) Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4(3):1664–1670CrossRefGoogle Scholar
  27. 27.
    Habteyes TG, Dhuey S, Cabrini S et al (2010) Theta-shaped plasmonic nanostructures: bring “dark” multipole plasmon resonances into action via conductive coupling. Nano Lett 11(4):1819–1825CrossRefGoogle Scholar
  28. 28.
    Zhang S, Li G, Chen YQ et al (2016) Pronounced Fano resonance in single gold split nanodisks wiyh 15-nm split gaps for intensive second harmonic generation. ACS Nano 10:1442–1453CrossRefGoogle Scholar
  29. 29.
    Sun B, Zhao LX, Wang C et al (2014) Tunable Fanno resonance in E-shape plasmonic nanocavities. J Phys Chem C 118(43):25124–25131CrossRefGoogle Scholar
  30. 30.
    Zhang Q, Wen XG, Li GY et al (2013) Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. ACS Nano 7(12):11071–11078CrossRefGoogle Scholar
  31. 31.
    FDTD solution,
  32. 32.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  33. 33.
    Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and at tunable Fano resonances. Nano Lett 8(11):3983–3988CrossRefGoogle Scholar
  34. 34.
    Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3(3):643–652CrossRefGoogle Scholar
  35. 35.
    Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou ZK, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4(4):2381CrossRefGoogle Scholar
  36. 36.
    Ovidio P, Antonio R, Mariano C et al (2013) Tunable Fano resonance in symmetric multilayered gold nanoshells. Nanoscale 5(1):209CrossRefGoogle Scholar
  37. 37.
    Clark AW, Sheridan AK, Glidle A, Cumming DRS, Cooper JM (2007) Tuneable visible resonances in crescent shaped nano-split-ring resonators. Appl Phys Lett 91(9):093109CrossRefGoogle Scholar
  38. 38.
    Benjamin G, Olivier JF (2011) Influence of electromagenetic interaction on the line shape of plasmonic Fano resonances. ACS Nano 5(11):8999–9008CrossRefGoogle Scholar
  39. 39.
    Rochholz H, Bocchio N, Kreiter M (2007) Tuning resonances on crescent-shaped noble-metal nanoparticles. New J Phys 9(53):1367Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Changchun University of Science and TechnologyChangchunChina

Personalised recommendations