, Volume 13, Issue 6, pp 2395–2403 | Cite as

Infrared-Visible Ultra-Wide Band Polarization-Independent Metamaterial Absorber Utilizing Low Conductivity π-Shaped Element

  • Nasrollah Karampour
  • Najmeh NozhatEmail author


In this paper, a polarization-insensitive ultra-wide band metamaterial absorber (MMA) is proposed. Various factors such as resonator shape and material, and placement of layers and elements have significant role to widening the absorption spectrum. In our proposed MMA, ultra-wide band absorption is achieved by utilizing a π-shaped resonator, a U-shaped gold element, and a composite ground plane. The π-shaped resonator is made of titanium with low conductivity, which leads to more electromagnetic power dissipation. The absorption spectrum of the proposed MMA covers infrared to visible frequencies by excitation of different electric and magnetic modes. The attained absorption is more than 90% between 130 and 350 THz and over 630 THz with the maximum value of 98% in the first band and 99% in the second one. Also, the proposed structure shows a suitable performance in both TE and TM modes for various incident angles. This ultra-broad band absorber is very promising for sensors, micro-bolometers, imaging, stealth, and other wide band applications in infrared and visible regimes.


Absorber Metamaterial Ultra-wide band Magnetic polariton Cavity mode 


  1. 1.
    Smith DR, Padilla WJ, Vier D, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187. CrossRefPubMedGoogle Scholar
  2. 2.
    Tang X, Kuhlmey BT, Stefani A, Tuniz A, Fleming SC, Argyros A (2016) Electromagnetic wave propagation through air-core waveguide with metamaterial cladding. J Lightwave Technol 34:5317–5324. CrossRefGoogle Scholar
  3. 3.
    Johnson MC, Brunton SL, Kundtz NB, Kutz JN (2015) Sidelobe canceling for reconfigurable holographic metamaterial antenna. IEEE Trans Antennas Propag 63:1881–1886. CrossRefGoogle Scholar
  4. 4.
    Islam MM, Islam MT, Samsuzzaman M, Faruque MRI, Misran N, Mansor MF (2015) A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications. Materials 8:392–407. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Khlopotin A, Olsson P, Larsson F (2015) Transformational cloaking from seismic surface waves by micropolar metamaterials with finite couple stiffness. Wave Motion 58:53–67. CrossRefGoogle Scholar
  6. 6.
    Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107:045901. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang N, Zhou P, Wang S, Weng X, Xie J, Deng L (2015) Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers. Opt Commun 338:388–392. CrossRefGoogle Scholar
  8. 8.
    Zhang B, Hendrickson J, Guo J (2013) Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. J Opt Soc Am B 30:656–662. CrossRefGoogle Scholar
  9. 9.
    Karampour N, Nozhat N (2016) Triple-band metamaterial absorber based on electric excitation of split ring resonator magnetic resonance. Millimeter-Wave and Terahertz Technologies (MMWaTT), Fourth International Conference on, 2016 IEEE:37–40.
  10. 10.
    Landy NI, Sajuyigbe S, Mock J, Smith D, Padilla W (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hu D, Wang H, Tang Z, Zhang X (2016) Investigation of a broadband refractory metal metamaterial absorber at terahertz frequencies. Appl Opt 55:5257–5262. CrossRefPubMedGoogle Scholar
  12. 12.
    Wang BX, Zhai X, Wang GZ, Huang WQ, Wang LL (2015) A novel dual-band terahertz metamaterial absorber for a sensor application. J Appl Phys 117:014504. CrossRefGoogle Scholar
  13. 13.
    Du K, Li Q, Zhang W, Yang Y, Qiu M (2015) Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers. IEEE Photon J 7:1–8. CrossRefGoogle Scholar
  14. 14.
    Wang J, Zhang W, Zhu M, Yi K, Shao J (2015) Broadband perfect absorber with titanium nitride nano-disk array. Plasmonics 10:1473–1478. CrossRefGoogle Scholar
  15. 15.
    Wang BX, Wang LL, Wang GZ, Huang WQ, Li XF, Zhai X (2014) Frequency continuous tunable terahertz metamaterial absorber. J Lightwave Technol 32:1183–1189. CrossRefGoogle Scholar
  16. 16.
    Li L, Wang J, Du H, Wang J, Qu S, Xu Z (2015) A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators. AIP Adv 5:017147. CrossRefGoogle Scholar
  17. 17.
    Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. In: John Wiley & SonsGoogle Scholar
  18. 18.
    Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12:1443–1447. CrossRefPubMedGoogle Scholar
  19. 19.
    Yin X, Chen L, Li X (2015) Ultra-broadband super light absorber based on multi-sized tapered hyperbolic metamaterial waveguide arrays. J Lightwave Technol 33:3704–3710. CrossRefGoogle Scholar
  20. 20.
    Ma W, Wen Y, Yu X (2013) Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators. Opt Express 21:30724–30730. CrossRefPubMedGoogle Scholar
  21. 21.
    Wang B-X, Wang L-L, Wang G-Z, Huang W-Q, Li X-F, Zhai X (2014) Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photon Technol Lett 26:111–114. CrossRefGoogle Scholar
  22. 22.
    Volakis JL, Chatterjee A, Kempel LC (1998) Finite element method electromagnetics: antennas, microwave circuits, and scattering applications. In: John Wiley & SonsGoogle Scholar
  23. 23.
    Hass G, Salzberg CD (1954) Optical properties of silicon monoxide in the wavelength region from 0.24 to 14.0 microns. J Opt Soc Am 44:181–187. CrossRefGoogle Scholar
  24. 24.
    Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283. CrossRefPubMedGoogle Scholar
  25. 25.
    Khodasevych IE, Wang L, Mitchell A, Rosengarten G (2015) Micro and nanostructured surfaces for selective solar absorption. Adv Opt Mater 3:852–881. CrossRefGoogle Scholar
  26. 26.
    Lee B, Wang L, Zhang Z (2008) Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Opt Express 16:11328–11336. CrossRefPubMedGoogle Scholar
  27. 27.
    Ra’Di Y, Simovski C, Tretyakov S (2015) Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys Rev Appl 3:037001–1–37. CrossRefGoogle Scholar
  28. 28.
    You B, Lu JY, Liou JH, Yu CP, Chen HZ, Liu TA, Peng JL (2010) Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides. Opt Express 18:19353–19360. CrossRefPubMedGoogle Scholar
  29. 29.
    Shi C, Zang XF, Chen L, Peng Y, Cai B, Nash GR, Zhu YM (2016) Compact broadband terahertz perfect absorber based on multi-interference and diffraction effects. IEEE Trans THz Sci Technol 6:40–44. CrossRefGoogle Scholar
  30. 30.
    Sun J, Liu L, Dong G, Zhou J (2011) An extremely broad band metamaterial absorber based on destructive interference. Opt Express 19:21155–21162. CrossRefPubMedGoogle Scholar
  31. 31.
    Gong C, Zhan M, Yang J, Wang Z, Liu H, Zhao Y, Liu W (2016) Broadband terahertz metamaterial absorber based on sectional asymmetric structures. Sci Rep 6:32466–1–8. CrossRefGoogle Scholar
  32. 32.
    Huang F, Fu Y (2017) Theoretical T circuit modeling of graphene-based metamaterial broadband absorber. Plasmonics 12:571–575. CrossRefGoogle Scholar
  33. 33.
    Alici KB, Turhan AB, Soukoulis CM, Ozbay E (2011) Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration. Opt Express 19:14260–14267. CrossRefPubMedGoogle Scholar
  34. 34.
    Karampour N, Nozhat N (2017) Ultra-wideband polarization insensitive UT-shaped metamaterial absorber. Phot Nano Fund Appl 24:35–40. CrossRefGoogle Scholar
  35. 35.
    Zhou J, Koschny T, Soukoulis CM (2007) Magnetic and electric excitations in split ring resonators. Opt Express 15:17881–17890. CrossRefPubMedGoogle Scholar
  36. 36.
    Okamoto T, Otsuka T, Sato S, Fukuta T, Haraguchi M (2012) Dependence of LC resonance wavelength on size of silver split-ring resonator fabricated by nanosphere lithography. Opt Express 20:24059–24067. CrossRefPubMedGoogle Scholar
  37. 37.
    Mulla B, Sabah C (2016) Multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics 11:1313–1321. CrossRefGoogle Scholar
  38. 38.
    Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G (2015) Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Appl Mater Interfaces 7:4962–4968. CrossRefPubMedGoogle Scholar
  39. 39.
    He X, Yan S, Lu G, Zhang Q, Wu F, Jiang J (2015) An ultra-broadband polarization-independent perfect absorber for the solar spectrum. RSC Adv 5:61955–61959. CrossRefGoogle Scholar
  40. 40.
    Ünal E, Bağmancı M, Karaaslan M, Akgol O, Arat HT, Sabah C (2017) Zinc oxide–tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting. IET Optoelectron 11:114–120. CrossRefGoogle Scholar
  41. 41.
    Ding F, Dai J, Chen Y, Zhu J, Jin Y, Bozhevolnyi SI (2016) Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci Rep 6:39445–1–9. CrossRefGoogle Scholar
  42. 42.
    Seniutinas G, Balčytis A, Reklaitis I, Chen F, Davis J, David C, Juodkazis S (2017) Tipping solutions: emerging 3D nano-fabrication/-imaging technologies. Nanophotonics 6:923–941. CrossRefGoogle Scholar
  43. 43.
    Vila-Comamala J, Gorelick S, Guzenko VA, David C (2011) 3D nanostructuring of hydrogen silsesquioxane resist by 100 keV electron beam lithography. J Vacuum Sci & Technol B, Nanotechnol Microelectron: Materials, Processing, Measurement, and Phenomena 29:06F301. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShiraz University of TechnologyShirazIran

Personalised recommendations