, Volume 13, Issue 6, pp 2377–2386 | Cite as

Fabrication of Carbon Nanoparticle Strand under Pulsed Arc Discharge

  • Milad Moutab Sahihazar
  • Mina NouriEmail author
  • Meisam Rahmani
  • Mohammad Taghi Ahmadi
  • Hadi Kasani


Nowadays, carbon-based nanomaterial application on nanoelectronic is growing fast. Therefore, the nanoparticle fabrication as a device, needs to be optimized. In the present work, a pulsed AC arc discharge apparatus is fabricated for production of carbon nanoparticles (CNPs)-based device, which is derived from decomposition of methane gas in plasma condition and atmospheric pressure controlled by a bobbling system. The morphological properties and identification of synthesized CNPs are characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and nanofocus techniques. The analysis of obtained images confirms the existence of CNPs (mainly carbon nanotubes CNTs) in this method. Also, pulsed electric field equation and relation between growth time and distance between two electrodes are investigated. Moreover, growth conditions of CNPs and their physical mechanism are discussed. Finally, the current-voltage (I-V) characteristics of synthesized CNPs are examined.


Carbon nanotubes (CNTs) Pulsed arc discharge method Pulsed potential and electric field I-V characteristic 


  1. 1.
    Yang S-Y, Chang K-H, Tien H-W, Lee Y-F, Li S-M, Wang Y-S, Wang J-Y, Ma C-CM, Hu C-C (2011) Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. Mater Chem 21(7):2374–2380CrossRefGoogle Scholar
  2. 2.
    Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2(10):605–615CrossRefGoogle Scholar
  3. 3.
    Anantram MP, Leonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69:507–561CrossRefGoogle Scholar
  4. 4.
    Zhang Q, Hároz EH, Jin Z, Ren L, Wang X, Arvidson RS, Lüttge A, Kono J (2013) Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes. Nano Lett 13(12):5991–5996CrossRefGoogle Scholar
  5. 5.
    Akbari E, Arora VK, Enzevaee A, Ahmadi MT, Saeidmanesh M, Khaledian M, Karimi H, Yusof R (2014) An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications. Beilstein J Nanotechnology 5:726–734CrossRefGoogle Scholar
  6. 6.
    Amenta V, Aschberger K (2015) Carbon nanotubes: potential medical applications and safety concerns. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(3):371–386CrossRefGoogle Scholar
  7. 7.
    Luo C, Xie H, Wang Q, Luo G, Liu C (2015) A review of the application and performance of carbon nanotubes in fuel cells. J Nanomater 2015:1–10Google Scholar
  8. 8.
    Zhang X, Li X, Zhang D, Su NQ, Yang W, Everitt HO, Liu J (2017) Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat Commun 8:14542CrossRefGoogle Scholar
  9. 9.
    Yáñez-Sedeño P, Pingarrón JM, Riu J, Rius FX (2010) Electrochemical sensing based on carbon nanotubes. Trends Anal Chem 29(9):939–953CrossRefGoogle Scholar
  10. 10.
    Ma J, Yeow JT, Chow JCL, Barnett RB (2007) A carbon nanotube-based radiation sensor. Int J Robot Autom 22(1):49–58Google Scholar
  11. 11.
    Fulcheri L, Probst N, Flamant G, Fabry F, Grivei E, Bourrat X (2002) Plasma processing: a step towards the production of new grades of carbon black. Carbon 40:169–176CrossRefGoogle Scholar
  12. 12.
    Gonzalez-Aguilar J, Moreno M, Fulcheri L (2007) Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure. Appl Phys 40:2361–2374Google Scholar
  13. 13.
    Ziebro J, Łukasiewicz I, Borowiak-Palen E, Michalkiewicz B (2010) Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21(14):145308CrossRefGoogle Scholar
  14. 14.
    Zhao S, Hong R, Luo Z, Lu H, Yan B (2011) Carbon nanostructures production by AC arc discharge plasma process at atmospheric pressure. J Nanomater 2011:1–6Google Scholar
  15. 15.
    Su Y, Zhang Y, Wei H, Yang Z, Kong ESW, Zhang Y (2012) Diameter-control of single-walled carbon nanotubes produced by magnetic field-assisted arc discharge. Carbon 50(7):2556–2562CrossRefGoogle Scholar
  16. 16.
    Schmidt-Szalowski K et al (2004) Methane conversion into C2 hydrocarbons and carbon black in dielectric-barrier and gliding discharges. J Adv Oxid Technol 7:39–50Google Scholar
  17. 17.
    Liu XY, Hong RY, Feng WG, Badami D (2014) Synthesis of structure controlled carbon nanomaterials by AC arc plasma process. Powder Technol 256:158–165CrossRefGoogle Scholar
  18. 18.
    Iqbal SZ et al (2013) Fabrication of CNT nano-strands as a Schottky transistor platform. Journal homepage: ISSN. 2089: p 4848
  19. 19.
    Akbari E, Buntat Z, Enzevaee A, Yazdi M, Bahadoran M, Nikoukar A (2014) Sensing and identification of carbon monoxide using carbon films fabricated by methane arc discharge decomposition technique. Nanoscale Res Lett 9(1):402CrossRefGoogle Scholar
  20. 20.
    Kasani H, Taghi Ahmadi M, Khoda-bakhsh R, RezaeiOchbelagh D, Ismail R (2016) Influences of Sr-90 beta-ray irradiation on electrical characteristics of carbon nanoparticles. J Appl Phys 119(12):124510CrossRefGoogle Scholar
  21. 21.
    Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19(11):1439–1451CrossRefGoogle Scholar
  22. 22.
    Sabnavis B (2009) Microplasma MEMS device: its design, fabrication and application in hydrogen generation for fuel cells. Rochester Institute of Technology, RIT Scholar WorksGoogle Scholar
  23. 23.
    Gail H-P, Sedlmayr E (1984) Formation of crystalline and amorphous carbon grains. Astron Astrophys 132:163–167Google Scholar
  24. 24.
    Keidar M, Shashurin A, Volotskova O, Raitses Y, Beilis II (2010) Mechanism of carbon nanostructure synthesis in arc plasma. Physics of Plasmas 17(5):057101CrossRefGoogle Scholar
  25. 25.
    Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Applied Physics A 72(5):573–580CrossRefGoogle Scholar
  26. 26.
    Sobczyk AT, Jaworek A, Rajch E, Sozańska M (2008. Trans Tech Publ) Formation of carbon fibres in high-voltage low-current electrical discharges. Solid State Phenom 140:103–108CrossRefGoogle Scholar
  27. 27.
    Gerber IC, Krasheninnikov AV, Foster AS, Nieminen RM (2010) A first-principles study on magnetic coupling between carbon adatoms on graphene. New J Phys 12(11):113021CrossRefGoogle Scholar
  28. 28.
    Wong H-SP, Akinwande D (2011) Carbon nanotube and graphene device physics. Cambridge University Press, CambridgeGoogle Scholar
  29. 29.
    McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 99(1):78–85CrossRefGoogle Scholar
  30. 30.
    Krishnamurthy G, Namitha R (2013) Synthesis of structurally novel carbon micro/nanospheres by low temperature-hydrothermal process. J Chil Chem Soc 58(3):1930–1933CrossRefGoogle Scholar
  31. 31.
    Kasani H, Khodabakhsh R, Taghi Ahmadi M, Rezaei Ochbelagh D, Ismail R (2017) Electrical properties of MWCNT/HDPE composite-based MSM structure under neutron irradiation. J Electron Mater 46(4):2548–2555CrossRefGoogle Scholar
  32. 32.
    Khanra P, Lee CN, Kuila T, Kim NH, Park MJ, Lee JH (2014) 7, 7, 8, 8-Tetracyanoquinodimethane-assisted one-step electrochemical exfoliation of graphite and its performance as an electrode material. Nanoscale 6(9):4864–4873CrossRefGoogle Scholar
  33. 33.
    Li H, Ha C-S, Kim I (2009) Fabrication of carbon nanotube/SiO 2 and carbon nanotube/SiO 2/Ag nanoparticles hybrids by using plasma treatment. Nanoscale Res Lett 4(11):1384–1388CrossRefGoogle Scholar
  34. 34.
    Zappielo CD et al (2016) Solid phase extraction to on-line preconcentrate trace cadmium using chemically modified nano-carbon black with 3-mercaptopropyltrimethoxysilane. J Braz Chem Soc 27(10):1715–1726Google Scholar
  35. 35.
    Afreen S, Kokubo K, Muthoosamy K, Manickam S (2017) Hydration or hydroxylation: direct synthesis of fullerenol from pristine fullerene [C 60] via acoustic cavitation in the presence of hydrogen peroxide. RSC Adv 7(51):31930–31939CrossRefGoogle Scholar
  36. 36.
    Abadir GB, Walus K, Pulfrey DL (2009) Bias-dependent amino-acid-induced conductance changes in short semi-metallic carbon nanotubes. Nanotechnology 21(1):015202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Milad Moutab Sahihazar
    • 1
  • Mina Nouri
    • 1
    Email author
  • Meisam Rahmani
    • 2
    • 3
  • Mohammad Taghi Ahmadi
    • 1
    • 2
  • Hadi Kasani
    • 4
  1. 1.Department of NanotechnologyUrmia UniversityUrmiaIran
  2. 2.Electronics Engineering Department, Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Department of Electrical EngineeringAmirkabir University of TechnologyTehranIran
  4. 4.Department of physics, Faculty of SciencesUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations