, Volume 13, Issue 6, pp 2353–2360 | Cite as

Performance of Graphene Plasmonic Antenna in Comparison with Their Counterparts for Low-Terahertz Applications

  • Sasmita Dash
  • Amalendu PatnaikEmail author


Graphene has attracted great interest for antenna applications because of its two-dimensional nature and superior electronic properties. Low losses, strong confinement, and high tunability properties of surface plasmon make this material as one of the suited material for terahertz applications. In this paper, we have investigated the surface plasmon polariton properties and plasmonic resonance of the graphene dipole antenna at low-terahertz frequency range and compared its radiation performance with that of carbon nanotube and copper, in order to find the suitability of these materials for THz antenna designing. Surface conductivity and surface impedance of graphene, carbon nanotube, and copper at terahertz band have been studied. The performances of these antennas are analyzed, and it was found that graphene plasmonic antenna better suits for making THz antennas.


Terahertz Antenna SPP Graphene Carbon nanotube Copper 


Funding Information

This research is supported by Indian Space Research Organization (ISRO), India, through grant no. ISRO/RES/3/760/17-18.


  1. 1.
    Seigel PH (2004) THz technology in biology and medicine. IEEE Trans Microwave Theory Tech 52(10):2438–2448CrossRefGoogle Scholar
  2. 2.
    Woolard DL, Jensen JO, Hwu RJ, Shur MS (2007) Terahertz science and technology for military and security applications. World Scientific, SingaporeCrossRefGoogle Scholar
  3. 3.
    Richard EC, Poul CS (2006) Design and field-of-view calibration of 114–660 GHz optics of the earth observing system microwave limb sounder. IEEE Trans Geosci Remote Sensing 44:1166–1181CrossRefGoogle Scholar
  4. 4.
    Siegel PH (2007) THz instruments for space. IEEE Trans Antennas Propag 55(11):2957–2965CrossRefGoogle Scholar
  5. 5.
    Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photon 1(2):97–105CrossRefGoogle Scholar
  6. 6.
    Kawase K, Ogawa Y, Watanabe Y (2003) Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express 11(20):2549–2554CrossRefPubMedGoogle Scholar
  7. 7.
    Koch M (2007) Terahertz communication: a 2020 vision. In: Miles RE et al (eds) Terahertz frequency detection and identification of materials and objects. Springer, pp 325–338Google Scholar
  8. 8.
    Yin X, Ng B, Abbott D (2012) Terahertz sources and detectors, Terahertz imaging for biomedical applications pattern recognition and tomographic reconstruction, Springer 9–26Google Scholar
  9. 9.
    Miles R, Harrison P, Lippens D (2001) Terahertz sources and systems, SpringerGoogle Scholar
  10. 10.
    Lewis RA (2014) A review of terahertz sources. J Phys D Appl Phys 47:374001CrossRefGoogle Scholar
  11. 11.
    Tamagnone M, Gómez-Díaz JS, Mosig JR, Perruisseau-Carrier J (2012) Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets. J Appl Phys 112:114915CrossRefGoogle Scholar
  12. 12.
    Dash S, Patnaik A (2017) Dual band reconfigurable plasmonic antenna using bilayer graphene. IEEE Int Symp Antennas Propag AP-S 2017:921–922Google Scholar
  13. 13.
    Wu Y, Qu M, Jiao L, Liu Y (2017) Tunable terahertz filter-integrated quasi-Yagi antenna based on graphene. Plasmonics 12:811–817CrossRefGoogle Scholar
  14. 14.
    Yang J, Kong F, Li K (2016) Broad tunable nanoantenna based on graphene log-periodic toothed structure. Plasmonics 11:981–986CrossRefGoogle Scholar
  15. 15.
    Keller S-D, Zaghloul A-I, Shanov V, Schulz M-J, Mast D-B, Alvarez N-T (2014) Electromagnetic simulation and measurement of carbon nanotube thread dipole antennas. IEEE Trans Nanotechnol 13(2):394–403CrossRefGoogle Scholar
  16. 16.
    Burke P-J, Li S, Yu Z (2006) Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans Nanotechnol 5(4):314–334CrossRefGoogle Scholar
  17. 17.
    Hanson G-W (2005) Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans Antennas Propag 53(11):3426–3435CrossRefGoogle Scholar
  18. 18.
    Gonzalo R, Ederra I, Mann C-M, Maagt P (2001) Radiation properties of terahertz dipole antenna mounted on photonic crystal. Electron Lett 37(70):612–613Google Scholar
  19. 19.
    Sharma A, Singh G (2009) Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems. J Infrared Milli Terahertz Waves 30:1–7CrossRefGoogle Scholar
  20. 20.
    Formanek F, Brun M-A, Umetsu T, Omori S, Yasuda A (2009) Aspheric silicon lenses for terahertz photoconductive antennas. Appl Phys Lett 94:021113CrossRefGoogle Scholar
  21. 21.
    Ritchie RH, Wilems RE (1969) Photon-plasmon interaction in a non-uniform electron gas. Phys Rev 178:372–381CrossRefGoogle Scholar
  22. 22.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon sub wavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  23. 23.
    Stockman MI (2011) Nano plasmonics: past, present, and glimpse into future. Opt Express 19:22029–22106CrossRefPubMedGoogle Scholar
  24. 24.
    Tassin P, Koschny T, Kafesaki M, Soukoulis C-M (2012) A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat Photonics 6(4):259–264CrossRefGoogle Scholar
  25. 25.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Girgorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  26. 26.
    Bolotin K, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kima P, Stormer H (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRefGoogle Scholar
  27. 27.
    Yu J, Liu G, Sumant AV, Goyal V, Balandin AA (2012) Graphene-on-diamond devices with increased current-carrying capacity: carbon sp2-on-sp3 technology. Nano Lett 12:1603–1608CrossRefPubMedGoogle Scholar
  28. 28.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Girgorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRefPubMedGoogle Scholar
  29. 29.
    Koppens FHL, Chang DE, Abajo FJG (2011) Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett 11:3370–3377CrossRefGoogle Scholar
  30. 30.
    Jablan M, Buljan H, Soljacic M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435CrossRefGoogle Scholar
  31. 31.
    Vasic B, Isic G, Gajic R (2013) Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies. J Appl Phys 113:013110CrossRefGoogle Scholar
  32. 32.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294CrossRefPubMedGoogle Scholar
  33. 33.
    Chen J, Yi Z, Xiao S, Xu X (2018) Absorption enhancement in double-layer cross-shaped graphene arrays. Mater Res Express 5(015605):1–6Google Scholar
  34. 34.
    Liu L, Chen J, Zhou Z, Yi Z, Ye X (2018) Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays. Mater Res Express 5. CrossRefGoogle Scholar
  35. 35.
    Chen J et al (2018) Plasmonic absorption enhancement in elliptical graphene arrays. Nanomaterials 8(1-8):175CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Cubukcu E, Capasso F (2009) Optical nano rod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons. Appl Phys Lett 95:201101CrossRefGoogle Scholar
  37. 37.
    Nair RR, Blake P, Grigorenko AN, Novoselove KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRefGoogle Scholar
  38. 38.
    Iijima I (1991) Helical microtubules of graphitic carbon. Nature 354(56–58):1991Google Scholar
  39. 39.
    McEuen PL, Fuhrer MS, Park HK (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1:78–85CrossRefGoogle Scholar
  40. 40.
    Gusynin V, Sharapov S, Carbotte J (2006) Magneto-optical conductivity in graphene. J Phys Condens Matter 19(1–28):026222Google Scholar
  41. 41.
    Burke PJ (2003) An RF circuit model for carbon nanotubes. IEEE Trans Nanotechnol 2:55–58CrossRefGoogle Scholar
  42. 42.
    Zhou X, Park JY, Huang S, Liu J, McEuen PL (2005) Band structure, phonon scattering and the performance limit of single-walled carbon nanotube transistors. Phys Rev Lett 95(1-4):146805CrossRefPubMedGoogle Scholar
  43. 43.
    Kittel C (1986) Introduction to solid state physics, 6th edn. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations