, Volume 13, Issue 6, pp 2319–2328 | Cite as

Analysis of Bloch Surface Waves at the Interface Between Two Semi-infinite Rugate Filters with Symmetric Refractive Index Profiles

  • Habibullah Manzoor
  • Tareq ManzoorEmail author
  • Saqib Saleem
  • Sanaullah Manzoor
  • Masroor Hussain


Surface electromagnetic waves are representation of Maxwell’s frequency domain equations at the interface of two dissimilar materials. In this article, two canonical boundary value problems have been formulated to analyze the multiplicity of electromagnetic surface waves at the interface between two dissimilar materials. In the first problem, interface between two semi-infinite rugate filters having symmetric refractive index profiles is considered and in the second problem, to enhance the multiplicity of surface electromagnetic waves, a homogeneous dielectric slab is included between two semi-infinite symmetric rugate filters. Multiplicity has been observed by varying the size of dielectric material from 0 to 1000 nm. Numerical results show that the number of Tamm waves of different phase speeds, different polarization states, different degrees of localization, and different field profiles that are being propagated at interface between two semi-infinite rugate filters having symmetric refractive profile is almost twice as when asymmetric refractive index profile is used. Having two interfaces when a homogeneous dielectric layer is placed between two semi-infinite rugate filters has increased the multiplicity of electromagnetic surface waves.


Surface electromagnetic waves Rugate filter Semi-infinite Symmetric refractive index 


  1. 1.
    Pulsifer DP, Lakhtakia A (2009) Multiple surface plasmon polariton waves. Electron Lett 45(22):1137–1138CrossRefGoogle Scholar
  2. 2.
    Polo JA, Lakhtakia A (2011) Surface electromagnetic waves: a review. Laser Photonics Rev 5(2):234–246CrossRefGoogle Scholar
  3. 3.
    Takayama O, Crasovan L-C, Johansen SK, Mihalache D, Artigas D, Torner L (2008) Dyakonov surface waves: a review. Electromagnetics 28(3):126–145CrossRefGoogle Scholar
  4. 4.
    Gao J, Lakhtakia A, Polo JA Jr, Lei M (2009) Dyakonov-Tamm wave guided by a twist defect in a structurally chiral material. JOSA A 26(7):1615–1621CrossRefPubMedGoogle Scholar
  5. 5.
    Aurelio D, Liscidini M (2017) Electromagnetic field enhancement in Bloch surface waves. Phys Rev B 96(4):045308CrossRefGoogle Scholar
  6. 6.
    Descrovi E, Sfez T, Dominici L, Nakagawa W, Michelotti F, Giorgis F, Herzig H-P (2008) Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals. Opt Express 16(8):5453–5464CrossRefPubMedGoogle Scholar
  7. 7.
    Sfez T, Descrovi E, Libo Y, Brunazzo D, Quaglio M, Dominici L, Nakagawa W et al (2010) Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation. JOSA B 27(8):1617–1625CrossRefGoogle Scholar
  8. 8.
    Rodriguez GA, Lonai JD, Mernaugh RL, Weiss SM (2014) Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules. Nanoscale Res Lett 9(1):383CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Farmer A et al (2012) Biosensing using surface electromagnetic waves in photonic band gap multilayers. Sensors Actuators B Chem 173:79–84CrossRefGoogle Scholar
  10. 10.
    Abdulhalim I, Zourob M, Lakhtakia A (2008) Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28(3):214–242CrossRefGoogle Scholar
  11. 11.
    Matveeva EG, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW, Lakowicz JR, Gryczynski I (2005) Directional surface plasmon-coupled emission: application for an immunoassay in whole blood. Anal Biochem 344(2):161–167CrossRefPubMedGoogle Scholar
  12. 12.
    Kim JT, Ju JJ, Park S, Kim M-s, Park SK, Lee M-H (2008) Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides. Opt Express 16(17):13133–13138CrossRefPubMedGoogle Scholar
  13. 13.
    Viti L, Coquillat D, Politano A, Kokh KA, Aliev ZS, Babanly MB, Tereshchenko OE, Knap W, Chulkov EV, Vitiello MS (2015) Plasma-wave terahertz detection mediated by topological insulators surface states. Nano Lett 16(1):80–87CrossRefPubMedGoogle Scholar
  14. 14.
    Mitrofanov O, Viti L, Dardanis E, Giordano MC, Ercolani D, Politano A, Sorba L, Vitiello MS (2017) Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging. Sci Rep 7:44240CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Viti L, Jin H, Coquillat D, Politano A, Consejo C, Knap W, Vitiello MS (2016) Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies. Adv Mater 28(34):7390–7396CrossRefPubMedGoogle Scholar
  16. 16.
    Viti L, Hu J, Coquillat D, Politano A, Knap W, Vitiello MS (2016) Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Sci Rep 6:20474CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Dyakonov M, Shur M (1993) Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys Rev Lett 71(15):2465–2468CrossRefPubMedGoogle Scholar
  18. 18.
    Dyakonov M, Shur M (1996) Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans Electron Devices 43(3):380–387CrossRefGoogle Scholar
  19. 19.
    Giorgis F, Descrovi E, Summonte C, Dominici L, Michelotti F (2010) Experimental determination of the sensitivity of Bloch surface waves based sensors. Opt Express 18(8):8087–8093CrossRefPubMedGoogle Scholar
  20. 20.
    Rodriguez GA, Ryckman JD, Jiao Y, Fuller RL, Weiss SM (2013) Real-time detection of small and large molecules using a porous silicon grating-coupled Bloch surface wave label-free biosensor. Frontiers in biological detection: from nanosensors to systems V. Int Soc Opt Photo 8570:857004Google Scholar
  21. 21.
    Politano A, Viti L, Vitiello MS (2017) Optoelectronic devices, plasmonics, and photonics with topological insulators. APL Mater 5(3):035504CrossRefGoogle Scholar
  22. 22.
    Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A, Vitiello MS (2015) Black phosphorus terahertz photodetectors. Adv Mater 27(37):5567–5572CrossRefPubMedGoogle Scholar
  23. 23.
    Viti L, Politano A, Vitiello MS (2017) Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges. Appl Mater 5(3):035602CrossRefGoogle Scholar
  24. 24.
    Politano A, Chiarello G (2014) Plasmon modes in graphene: status and prospect. Nano 6(19):10927–10940Google Scholar
  25. 25.
    Jamalpoor K, Zarifkar A, Miri M (2017) Application of graphene second-order nonlinearity in THz plasmons excitation. Photonics Nanostruct Fundam Appl 26:80–84CrossRefGoogle Scholar
  26. 26.
    Kravets VG, Jalil R, Kim YJ, Ansell D, Aznakayeva DE, Thackray B, Britnell L, Belle BD, Withers F, Radko IP, Han Z (2014) Graphene-protected copper and silver plasmonics. Sci Rep 4:5517CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Guler U, Shalaev VM, Boltasseva A (2015) Nanoparticle plasmonics: going practical with transition metal nitrides. Mater Today 18(4):227–237CrossRefGoogle Scholar
  28. 28.
    Ding W, Hsu L-Y, Schatz GC (2017) Plasmon-coupled resonance energy transfer: a real-time electrodynamics approach. J Chem Phys 146(6):064109CrossRefPubMedGoogle Scholar
  29. 29.
    Cushing SK, Nianqiang W (2013) Plasmon-enhanced solar energy harvesting. Electrochem Soc Interface 22(2):63–67CrossRefGoogle Scholar
  30. 30.
    Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L, Michelotti F (2012) Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sensors Actuators B Chem 174:292–298CrossRefGoogle Scholar
  31. 31.
    Faryad M, Maab H, Lakhtakia A (2011) Rugate-filter-guided propagation of multiple Fano waves. J Opt 13(7):075101CrossRefGoogle Scholar
  32. 32.
    Fahr S, Ulbrich C, Kirchartz T, Rau U, Rockstuhl C, Lederer F (2008) Rugate filter for light-trapping in solar cells. Opt Express 16(13):9332–9343CrossRefPubMedGoogle Scholar
  33. 33.
    Lorenzo E, Oton CJ, Capuj NE, Ghulinyan M, Navarro-Urrios D, Gaburro Z, Pavesi L (2005) Fabrication and optimization of rugate filters based on porous silicon. Phys Status Solidi C 2(9):3227–3231CrossRefGoogle Scholar
  34. 34.
    Maab H, Faryad M, Lakhtakia A (2011) Surface electromagnetic waves supported by the interface of two semi-infinite rugate filters with sinusoidal refractive-index profiles. JOSA B 28(5):1204–1212CrossRefGoogle Scholar
  35. 35.
    Polo J, Mackay T, Lakhtakia A (2013) Electromagnetic surface waves: a modern perspective. NewnesGoogle Scholar
  36. 36.
    Faryad M, Lakhtakia A (2010) Surface plasmon–polariton wave propagation guided by a metal slab in a sculptured nematic thin film. J Opt 12(8):085102CrossRefGoogle Scholar
  37. 37.
    Marcuse D (1991) Theory of dielectric optical waveguides (Academic, San Diego). Google Scholar 233–234Google Scholar
  38. 38.
    Baumeister PW (2004) Optical coating technology. Lecture notes for the five-day short course engineering 823:7–4Google Scholar
  39. 39.
    Kavokin AV, Shelykh IA, Malpuech G (2005) Lossless interface modes at the boundary between two periodic dielectric structures. Phys Rev B 72(23):233102CrossRefGoogle Scholar
  40. 40.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sensors Actuators B Chem 54(1-2):3–15CrossRefGoogle Scholar
  41. 41.
    Maab H, Faryad M (2014) Coupled Tamm waves guided by an isotropic and homogeneous dielectric layer in a rugate filter. J Mod Opt 61(12):986–993CrossRefGoogle Scholar
  42. 42.
    Liao P ed. (2012) Theory of dielectric optical waveguides 2e. Academic pressGoogle Scholar
  43. 43.
    Abbas F, Faryad M (2017) A highly sensitive multiplasmonic sensor using hyperbolic chiral sculptured thin films. J Appl Phys 122(17):173104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of Engineering and technologyLahore, Faisalabad campusPakistan
  2. 2.Energy Research CenterCOMSATS Institute of Information TechnologyLahorePakistan
  3. 3.University of Otago WellingtonNew Zealand
  4. 4.COMSATS Institute of Information TechnologySahiwalPakistan
  5. 5.Faculty of Computer ScienceInformation Technology UniversityLahorePakistan
  6. 6.Faculty of Computer Science and EngineeringGIKITopi SwabiPakistan

Personalised recommendations