, Volume 13, Issue 6, pp 2255–2259 | Cite as

Λ-Type and V-Type Plasmon-Induced Transparency in Plasmonic Waveguide Systems

  • Zhihui HeEmail author
  • Xincheng Ren
  • Shaomin Bai
  • Hongjian Li
  • Dongmei Cao
  • Gang Li


We present bright-dark-bright mode, dark-bright-bright mode, and bright-dark-bright-dark mode plasmonic waveguide structures. And the typical plasmon-induced transparency (PIT) spectra are observed in our proposed structure. In addition, we firstly make an attempt to introduce V-type PIT and Λ-type PIT to describe transmission spectra in bright-dark-bright mode, dark-bright-bright mode plasmonic waveguide systems, respectively. Interestingly, we can see the V-type PIT and Λ-type PIT in bright-dark-bright-dark mode plasmonic waveguide structures. The proposed model and findings may provide guidance for fundamental research of the plasmonic devices applications.


Plasmonics Waveguides Subwavelength structures 


Funding Information

This work was projected by the National Natural Science Foundation of China under Grant No. 61379026 and supported by the Doctoral research program of Yan’an University Grant No. YDBK2017-29.


  1. 1.
    Boller KJ, Imamolu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66:2593–2596CrossRefPubMedGoogle Scholar
  2. 2.
    Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77:633–673CrossRefGoogle Scholar
  3. 3.
    Hau LV, Harris SE, Dutton Z, Behroozi CH (1999) Light speed reduction to 17 ms−1 in an ultracold atomic gas. Nature 397:594–598CrossRefGoogle Scholar
  4. 4.
    Shvets G, Wurtele JS (2002) Transparency of magnetized plasma at the cyclotron frequency. Phys Rev Lett 89:115003CrossRefPubMedGoogle Scholar
  5. 5.
    Liu C, Dutton Z, Behroozi CH, Hau LV (2001) Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409:490–493CrossRefPubMedGoogle Scholar
  6. 6.
    Lukin MD, Imamoglu A (2001) Controlling photons using electromagnetically induced transparency. Nature 413:273–276CrossRefPubMedGoogle Scholar
  7. 7.
    Artar A, Yanik AA, Altug H (2011) Multispectral plasmon induced transparency in coupled meta-atoms. Nano Lett 11:1685–1689CrossRefPubMedGoogle Scholar
  8. 8.
    Evlyukhin AB, Bozhevolnyi SI, Pors A, Nielsen MG, Radko IP, Willatzen M, Albrektsen O (2010) Detuned electrical dipoles for plasmonic sensing. Nano Lett 10:4571–4577CrossRefPubMedGoogle Scholar
  9. 9.
    Bozhevolnyi SI, Evlyukhin AB, Pors A, Nielsen MG, Willatzen M, Albrektsen O (2011) Optical transparency by detuned electrical dipoles. New J Phys 13:023034CrossRefGoogle Scholar
  10. 10.
    Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401CrossRefPubMedGoogle Scholar
  11. 11.
    He Z, Zhao M, Chen Z, Xu H, Zheng M, Li H (2017) Keeping good sensing performance of metal–dielectric–metal waveguides after coating treatment. IEEE Photonics J 9:4501107Google Scholar
  12. 12.
    Xu H, Li H, Li B, He Z, Chen Z, Zheng M (2016) Influential and theoretical analysis of nano-defect in the stub resonator. Sci Rep 6:30877CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    He Z, Li H, Li B, Chen Z, Xu H, Zheng M (2016) Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub. Opt Lett 39:5206CrossRefGoogle Scholar
  14. 14.
    Zhan S, Li H, He Z, Li B, Chen Z, Xu H (2015) Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide. Opt Express 23:20313–20320CrossRefPubMedGoogle Scholar
  15. 15.
    Huang Y, Min C, Dastmalchi P, Veronis G (2015) Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Opt Express 23:14922–14936CrossRefPubMedGoogle Scholar
  16. 16.
    He Z, Li H, Zhan S, Li B, Chen Z, Xu H (2015) Tunable multi-switching in plasmonic waveguide with Kerr nonlinear resonator. Sci Rep 5:15837CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen Z, Li H, Zhan S, He Z, Li B, Xu H (2015) Sensing characteristics based on Fano resonance in rectangular ring waveguide. Opt Commun 356:373–377CrossRefGoogle Scholar
  18. 18.
    Liu N, Hentschel M, Weiss T, Alivisatos AP, Giessen H (2011) Three-dimensional plasmon rulers. Science 332:1407–1410CrossRefPubMedGoogle Scholar
  19. 19.
    Lu H, Liu XM, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85:053803CrossRefGoogle Scholar
  20. 20.
    Lu H, Liu XM, Mao D, Gong YK, Wang GX (2011) Induced transparency in nanoscale plasmonic resonator systems. Opt Lett 36:3233–3235CrossRefPubMedGoogle Scholar
  21. 21.
    He Z, Li H, Zhan S, Cao G, Li B (2014) Combined theoretical analysis for plasmon-induced transparency in waveguide systems. Opt Lett 39:5543–5546CrossRefPubMedGoogle Scholar
  22. 22.
    Bahadori M, Eshaghian A, Hodaei H, Rezaei M, Mehrany K (2013) Analysis and design of optical demultiplexer based on arrayed plasmonic slot cavities: transmission line model. IEEE Photon Technol Lett 25:784–786CrossRefGoogle Scholar
  23. 23.
    Palik ED (1998) Handbook of optical constants in solids. Academic, BostonGoogle Scholar
  24. 24.
    Cao G, Li H, Zhan S, He Z, Guo Z, Xu X, Yang H (2014) Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide. Opt Lett 39:216–219CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhihui He
    • 1
    Email author
  • Xincheng Ren
    • 1
  • Shaomin Bai
    • 1
  • Hongjian Li
    • 2
  • Dongmei Cao
    • 1
  • Gang Li
    • 1
  1. 1.School of Physics and Electronic InformationYan’an UniversityYan’anPeople’s Republic of China
  2. 2.School of Physics and ElectronicsCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations