Plasmonics

pp 1–7 | Cite as

Complementary Aluminum Nanopatch/Nanohole Arrays for Broad Palettes of Colors

Article
  • 37 Downloads

Abstract

We investigate aluminum nanopatch/nanohole arrays surrounded by a dielectric material on plastic substrates for large area color printing. In this specific arrangement, metallic nanopatches have a smaller size than that of the nanoholes, lying distantly above their complementary nanoholes. Simulation results show that the coloring in reflection as well as in transmission can be tuned greatly by the structure period and the duty cycle. In contrast, variations of the separation distance practically do not change the hue. Manufactured samples having a large range of these grating parameters demonstrate a broad palette of bright colors in reflection and transmission. The fabrication process may be scaled up for large area color printing, since it can be implemented as a cost-effective roll-to-roll process.

Keywords

Surface plasmons Subwavelength structures Structural colors 

References

  1. 1.
    Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46CrossRefGoogle Scholar
  2. 2.
    Chen Q, Cumming DRS (2010) High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt Express 18:14056–14062CrossRefGoogle Scholar
  3. 3.
    Liu YJ, Si GY, Leong ESP, Xiang N, Danner AJ, Teng JH (2012) Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv Mater 24:131–135Google Scholar
  4. 4.
    Chen WT, Yang KY, Wang CM, Huang YW, Sun G, Chiang ID, Liao CY, Hsu WL, Lin HT, Sun S, Zhou L, Liu AQ, Tsai DP (2014) High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14:225–230CrossRefGoogle Scholar
  5. 5.
    Wu YKR, Hollowell AE, Zhang C, Guo LJ (2013) Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci Rep 3:1194CrossRefGoogle Scholar
  6. 6.
    Lochbihler H (2009) Colored images generated by metallic sub-wavelength gratings. Opt Express 17:12189–12196CrossRefGoogle Scholar
  7. 7.
    Kumar K, Duan H, Hegde RS, Koh SC, Wei JN, Yang JK (2012) Printing colour at the optical diffraction limit. Nat Nanotechnol 7:557–561CrossRefGoogle Scholar
  8. 8.
    Inoue D, Miura A, Nomura T, Fujikawa H, Sato K, Ikeda N, Tsuya D, Sugimoto Y, Koide Y (2011) Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl Phys Lett 98:093113CrossRefGoogle Scholar
  9. 9.
    Kristensen A, Yang JKW, Bozhevolnyi SI, Link S, Nordlander P, Halas NJ, Mortensen NA (2016) Plasmonic colour generation. Nat Rev Mater 2:16088CrossRefGoogle Scholar
  10. 10.
    Fu Y, Tippets CA, Donev EU, Lopez R (2016) Structural colors: from natural to artificial systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:758–775CrossRefGoogle Scholar
  11. 11.
    Ok JG, Shin YJ, Park HJ, Guo LJ (2015) A step toward next-generation nanoimprint lithography: extending productivity and applicability. Appl Phys A 121:343–356CrossRefGoogle Scholar
  12. 12.
    Ahn SH, Guo LJ (2009) Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3:2304–2310CrossRefGoogle Scholar
  13. 13.
    Lochbihler H, Ye Y (2013) Two-dimensional subwavelength gratings with different frontside/backside reflectance. Opt Lett 38:1028–1030CrossRefGoogle Scholar
  14. 14.
    Li WD, Hu J, Chou SY (2011) Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal rods. Opt Express 19:21098–21108CrossRefGoogle Scholar
  15. 15.
    Shrestha VR, Lee SS, Kim ES, Choi DY (2014) Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett 14:6672–6678CrossRefGoogle Scholar
  16. 16.
    Goh XM, Zheng Y, Tan SJ, Zhang L, Kumar K, Qiu CW, Yang JKW (2014) Three-dimensional plasmonic stereoscopic prints in full colour. Nat Commun 5:5361CrossRefGoogle Scholar
  17. 17.
    Tan SJ, Zhang L, Zhu D, Goh XM, Wang YM, Kumar K, Qiu CW, Yang JK (2014) Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 14:4023–4029CrossRefGoogle Scholar
  18. 18.
    Olson J, Manjavacas A, Liu L, Chang WS, Foerster B, King NS, Knight MW, Nordlander P, Halas NJ, Link S (2014) Vivid, full-color aluminum plasmonic pixels. Proc Natl Acad Sci 111:14348–14353CrossRefGoogle Scholar
  19. 19.
    James TD, Mulvaney P, Roberts A (2016) The Plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett 16:3817–3823CrossRefGoogle Scholar
  20. 20.
    Xue J, Zhou ZK, Wei Z, Su R, Lai J, Li J, Li C, Zhang T, Wang XH (2015) Scalable, full-colour and controllable chromotropic plasmonic printing. Nat Commun 6: 8906Google Scholar
  21. 21.
    Cheng F, Yang X, Rosenmann D, Stan L, Czaplewski D, Gao J (2015) Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer. Opt Express 23:25329–25339CrossRefGoogle Scholar
  22. 22.
    McPeak KM, Jayanti SV, Kress SJ, Meyer S, Iotti S, Rossinelli A, Norris DJ (2015) Plasmonic films can easily be better: rules and recipes. ACS Photonics 2:326–333CrossRefGoogle Scholar
  23. 23.
    Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Mortensen NA (2014) Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14:4499–4504CrossRefGoogle Scholar
  24. 24.
    Lochbihler H (2015) Polarizing and angle-sensitive color filter in transmittance for security feature applications. Adv Opt Technol 4:71–77CrossRefGoogle Scholar
  25. 25.
    Moharam MG, Gaylord TK (1986) Rigorous coupled-wave analysis of metallic surface-relief gratings. J Opt Soc Am A 3:1780–1787CrossRefGoogle Scholar
  26. 26.
    Grann EB, Moharam MG, Pommet DA (1994) Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings. J Opt Soc Am A 11:2695–2703CrossRefGoogle Scholar
  27. 27.
    Klein GA (2010) Industrial color physics. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Giesecke & Devrient GmbHMunichGermany
  2. 2.College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouChina
  3. 3.Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of ChinaSoochow UniversitySuzhouChina

Personalised recommendations