, Volume 13, Issue 6, pp 2151–2160 | Cite as

Simulation and Analytical Study of Optical Complex Field in Nano-corral Slits Plasmonic Lens

  • Priyanshu Jain
  • Sandeep Gupta
  • Tanmoy MaitiEmail author


Although spiral plasmonic lens has been proposed as circular polarization analyzer, there is no such plasmonic nanostructure available for linear polarization. In the current work, we have designed nano-corral slits (NCS) plasmonic lens, which focuses the x- and y-polarized light into spatially distinguished plasmonic fields. We have calculated analytically and numerically the electric field intensity and phase of the emission from nano-corral slits plasmonic lens with different pitch lengths under various polarizations of the illumination. It has been shown that one can control the wave front of the output beam of these plasmonic lenses by manipulating the illumination of both circular and linear polarization. Our theoretical study in correlation with FDTD simulation has shown that NCS plasmonic lens with pitch length equal to λspp produces scalar vortex beam having optical complex fields with helical wave front and optical singularity at the center under circular polarization of light. When NCS lens (pitch = λspp) is illuminated with linearly polarized light, it exhibits binary distribution of phase with same electric field intensity around the center. However, with pitch length of 0.5λspp, NCS shows linear dichroism under linearly polarized illumination unlike spiral plasmonic lens (SPL) eliminating the use of circularly polarized light. Optical complex fields produced by these NCS plasmonic lenses may find applications for faster quantum computing, data storage, and telecommunications.


Plasmonic Lens Nano-corral slits Optical complex field Nanophotonics 


Funding Information

The authors received financial assistance from the Indian Space Research Organisation (ISRO) under Grant STC- MET-2015099.

Supplementary material

11468_2018_732_MOESM1_ESM.docx (2 mb)
ESM 1 (DOCX 2087 kb)


  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefPubMedGoogle Scholar
  2. 2.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer US, Boston, MACrossRefGoogle Scholar
  3. 3.
    Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in Plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10:3184–3189CrossRefPubMedGoogle Scholar
  4. 4.
    Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819):1686–1686CrossRefPubMedGoogle Scholar
  5. 5.
    Smolyaninov II, Hung YJ, Davis CC (2006) Magnifying superlens in the visible frequency range. Science 315(5819):1699CrossRefGoogle Scholar
  6. 6.
    Vedantam S, Lee H, Tang J, Conway J, Staffaroni M, Yablonovitchet E (2009) A plasmonic dimple lens for nanoscale focusing of light. Nano Lett 9:3447–3452CrossRefPubMedGoogle Scholar
  7. 7.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511CrossRefPubMedGoogle Scholar
  8. 8.
    Fang Z, Lin C, Ma R, Huang S, Zhu X (2010) Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano 4:75–82CrossRefPubMedGoogle Scholar
  9. 9.
    Rothenhäusler B, Knoll W (1988) Surface-plasmon microscopy. Nature 332:615–617CrossRefGoogle Scholar
  10. 10.
    Höppener C, Beams R, Novotny L (2009) Background suppression in near-field optical imaging. Nano Lett 9:903–908CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Fang N, Lee H, Sun C, Zhang X (2005) Sub–diffraction-limited optical imaging with a silver superlens. Science 308:534–537CrossRefPubMedGoogle Scholar
  12. 12.
    Babayan Y, McMahon JM, Li S, Gray SK, Schatz GC, Odom TW (2009) Confining standing waves in optical corrals. ACS Nano 3:615–620CrossRefPubMedGoogle Scholar
  13. 13.
    Lerman GM, Yanai A, Levy U (2009) Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. Nano Lett 9:2139–2143CrossRefPubMedGoogle Scholar
  14. 14.
    Chen W, Nelson RL, Zhan Q (2012) Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens. Opt Lett 37:1442–1444CrossRefPubMedGoogle Scholar
  15. 15.
    Chen W, Abeysinghe DC, Nelson RL, Zhan Q (2010) Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett 10:2075–2079CrossRefPubMedGoogle Scholar
  16. 16.
    Li J, Yang C, Zhao H, Lin F, Zhu X (2014) Plasmonic focusing in spiral nanostructures under linearly polarized illumination. Opt Express 22:16686–16693CrossRefPubMedGoogle Scholar
  17. 17.
    Gorodetski Y, Niv A, Kleiner V, Hasman E (2008) Observation of the spin-based plasmonic effect in nanoscale structures. Phys Rev Lett 101:43903CrossRefGoogle Scholar
  18. 18.
    Bachman KA, Peltzer JJ, Flammer PD, Furtak TE, Collins RT, Hollingsworth RE (2012) Spiral plasmonic nanoantennas as circular polarization transmission filters. Opt Express 20:1308–1319CrossRefPubMedGoogle Scholar
  19. 19.
    Yang S, Chen W, Nelson RL, Zhan Q (2009) Miniature circular polarization analyzer with spiral plasmonic lens. Opt Lett 34:3047–3049CrossRefPubMedGoogle Scholar
  20. 20.
    Spektor G, David A, Gjonaj B, Bartal G, Orenstein M (2015) Metafocusing by a metaspiral plasmonic lens. Nano Lett 15:5739–5743CrossRefPubMedGoogle Scholar
  21. 21.
    Gjonaj B, David A, Blau Y, Spektor G, Orenstein M, Dolev S, Bartal G (2014) Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space. Nano Lett 14:5598–5602CrossRefPubMedGoogle Scholar
  22. 22.
    Rui G, Zhan Q, Cui Y (2015) Tailoring optical complex field with spiral blade plasmonic vortex lens. Sci Rep 5:13732CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Dennis MR, O’Holleran K, Padgett MJ (2009) Chapter 5 singular optics: optical vortices and polarization singularities. Prog Opt 53:293–363CrossRefGoogle Scholar
  24. 24.
    Bozinovic N, Yue Y, Ren Y et al (2013) Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340(80):1545–1548CrossRefPubMedGoogle Scholar
  25. 25.
    Miao P, Zhang Z, Sun J et al (2016) Orbital angular momentum microlaser. Science 353(80):464–467CrossRefPubMedGoogle Scholar
  26. 26.
    Venugopalan P, Li X, Gu M (2011) Characterisation of a plasmonic lens for super-resolution optical data storage. In: 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology IEEE, pp 1637–1638. doi:
  27. 27.
    Rui G, Nelson RL, Zhan Q (2012) Beaming photons with spin and orbital angular momentum via a dipole-coupled plasmonic spiral antenna. Opt Express 20:18819–18826CrossRefPubMedGoogle Scholar
  28. 28.
    Lee S-Y, Kim S-J, Kwon H, Lee B (2015) Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits. IEEE Photon Technol Lett 27:705–708CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Plasmonics and Perovskites Laboratory, Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations