, Volume 13, Issue 6, pp 2117–2124 | Cite as

Protein-Metal Interactions Probed by SERS: Lysozyme on Nanostructured Gold Surface

  • N. R. AgarwalEmail author
  • M. Tommasini
  • E. Ciusani
  • A. Lucotti
  • S. Trusso
  • P. M. Ossi


Surface-enhanced Raman scattering is a well-established technique for molecular detection at low concentration, which is becoming increasingly popular in the field of biotechnology and health sciences. Since the process is understood in depth, the technique is becoming reliable. In this contribution, we consider another aspect of SERS besides molecular detection, focusing on the binding mechanisms of a complex system such as a protein to the noble metal substrates required by the technique itself. We also show that using a solid nanostructured substrate produced by controlled pulsed laser deposition SERS enables label-free detection of a protein. This is checked on lysozyme as a well-known prototype. Use of solid substrates with controlled morphology proves advantageous over colloidal systems for SERS applications. Moreover, such substrates are superior in terms of shelf life, packaging and ease of shipment.


Surface-enhanced Raman scattering Label-free detection Laser ablation Nanostructured substrates Lysozyme Protein binding 


Funding Information

M.T. acknowledges financial support from PRIN project “Plasmon-enhanced vibrational circular dichroism”. S.T. acknowledges funding by Italian Ministry of Education, University and Research (MIUR) by means of the national Program PON R & C 2007–2013, project “Hippocrates—Sviluppo di Micro e Nano-Tecnologie e Sistemi Avanzati per la Salute dell’uomo (PON0200355)”. Financial support by Polisocial Award 2014 “Controllare l’epilessia nei Paesi in via di sviluppo” (Controlling epilepsy in Developing Countries) is acknowledged by P.M.O.


  1. 1.
    Han XX, Zhao B, Ozaki Y (2009) Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem 394:1719–1727CrossRefPubMedGoogle Scholar
  2. 2.
    Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobin G. Immunochemistry 8:871–874CrossRefPubMedGoogle Scholar
  3. 3.
    Weemen BKV, Schuurs AHWM (1971) Immunoassay using antigen-enzyme conjugates. FEBS Lett 15:232–236CrossRefPubMedGoogle Scholar
  4. 4.
    Constantine NT, Zink H (2005) HIV testing technologies after two decades of evolution. Indian J Med Res 121:519–538PubMedGoogle Scholar
  5. 5.
    Harz M, Rösch P, Popp J (2009) Vibrational spectroscopy—a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry Part A 75A:104–113CrossRefGoogle Scholar
  6. 6.
    Lentini G, Fazio E, Calabrese F, De Plano LM, Puliafico M, Franco D, Nicolò MS, Carnazza S, Trusso S, Allegra A, Neri F, Musolino C, Guglielmino SPP (2015) Phage-AgNPs complex as SERS probe for U937 cell identification. Biosens Bioelectron 74:398–405CrossRefPubMedGoogle Scholar
  7. 7.
    Fazio E, Trusso S, Franco D, Nicolò MS, Allegra A, Neri F, Musolino C, And C, Guglielmino SPP (2016) A micro-Raman spectroscopic investigation of leukemic U-937 cells in aged cultures. Spectrochim Acta A Mol Biomol Spectrosc 159:21–29CrossRefPubMedGoogle Scholar
  8. 8.
    Lentini G, Franco D, Fazio E, De Plano LM, Trusso S, Carnazza S, Neri F, Guglielmino SPP (2016) Rapid detection of Pseudomonas aeruginosa by phage-capture system coupled with micro-Raman spectroscopy. Vibr Spectrosc 86:1–7CrossRefGoogle Scholar
  9. 9.
    Jaworska A, Fornasaro S, Sergo V, Bonifacio A (2016) Potential of surface enhanced Raman spectroscopy (SERS) in therapeutic drug monitoring (TDM). A critical review. Biosensors 6:47CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefGoogle Scholar
  11. 11.
    Kneipp K, Kneipp H, Kneipp J (2006) Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res 39:443–450CrossRefPubMedGoogle Scholar
  12. 12.
    Agarwal NR, Fazio E, Neri F, Trusso S, Castiglioni C, Lucotti A, Santo N, Ossi PM (2011) Ag and Au nanoparticles for SERS substrates produced by pulsed laser ablation. Cryst Res Technol 46:836–840CrossRefGoogle Scholar
  13. 13.
    Agarwal NR, Neri F, Trusso S, Lucotti A, Ossi PM (2012) Au nanoparticle arrays produced by pulsed laser deposition for surface enhanced Raman spectroscopy. Appl Surf Sci 258:9148–9152CrossRefGoogle Scholar
  14. 14.
    Zanchi C, Lucotti A, Tommasini M, Trusso S, De Grazia U, Ciusani E, Ossi PM (2015) Au nanoparticle-based sensor substrates for apomorphine detection in plasma. Beilstein J Nanotechnol 6:2224–2232CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    C. Zanchi, A. Lucotti, M. Tommasini, S. Trusso, U. De Grazia, E Ciusani. and P. M. Ossi, Laser tailored nanoparticle arrays to detect molecules at dilute concentrations, Appl Surf Sci, 396, 1866–1874 (2017)CrossRefGoogle Scholar
  16. 16.
    Agarwal NR, Lucotti A, Tommasini M, Neri F, Trusso S, Ossi PM (2016) SERS detection and DFT calculation of 2-naphthalene thiol adsorbed on Ag and Au probes. Sens Actuators B Chem 237:545–555CrossRefGoogle Scholar
  17. 17.
    Anderson NL, Anderson NG et al (1998) Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis 19:1853–1861CrossRefPubMedGoogle Scholar
  18. 18.
    Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17:121–127CrossRefPubMedGoogle Scholar
  19. 19.
    Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19:5–14CrossRefGoogle Scholar
  20. 20.
    Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38:1119–1138CrossRefPubMedGoogle Scholar
  21. 21.
    Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, chapter 4. W. H. Freeman, New YorkGoogle Scholar
  22. 22.
    Wang H, Chu C, Wang W, Pai T (2014) A local average distance descriptor for flexible protein structure comparison. BMC Bioinformatics 15:1471–2105Google Scholar
  23. 23.
    Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418CrossRefPubMedGoogle Scholar
  24. 24.
    Sun J, Xianyu Y, Jiang X (2014) Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem Soc Rev 43:6239–6253CrossRefPubMedGoogle Scholar
  25. 25.
    Yang T, Li Z, Wang L, Guo C, Sun Y (2007) Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles. Langmuir 23:10533–10538CrossRefPubMedGoogle Scholar
  26. 26.
    Yuan X, Luo Z, Yu Y, Yao Q, Xie J (2013) Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem Asian J 8:858–871CrossRefPubMedGoogle Scholar
  27. 27.
    Wei H, Wang Z, Zhang J, House S, Gao Y, Yang L, Robinson H, Tan LH, Xing H, Hou C, Robertson IM, Zuo J, Lu Y (2011) Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nat Nanotechnol 6:93–97CrossRefPubMedGoogle Scholar
  28. 28.
    Saurabh S, Sahoo PK (2008) Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39:223–239CrossRefGoogle Scholar
  29. 29.
    Nester EW, Anderson DG, Roberts CE, Nester MT (2007) Microbiology: a human perspective, 5th edn. McGraw-Hill Higher Education, BostonGoogle Scholar
  30. 30.
    Krugliak L, Meyer PR, Taylor CR (1986) The distribution of lysozyme, alpha-1-antitrypsin, and alpha-1-antichymotrypsin in normal hematopoietic cells and in myeloid leukemias: an immunoperoxidase study on cytocentrifuge preparations, smears, and paraffin sections. Am J Hematol 21:99–109CrossRefPubMedGoogle Scholar
  31. 31.
    Prockop DJ (1964) A study of urinary and serum lysozyme in patients with renal disease. N Engl J Med 270:269–274CrossRefPubMedGoogle Scholar
  32. 32.
    Hu J, Sheng RS, Xu ZS, Zeng Y (1995) Surface enhanced Raman spectroscopy of lysozyme. Spectrochim Acta A 51:1087–1096CrossRefGoogle Scholar
  33. 33.
    Chandra G, Ghosh KS, Dasgupta S, Roy A (2010) Evidence of conformational changes in adsorbed lysozyme molecule on silver colloids. Int J Biol Macromol 47:361–365CrossRefPubMedGoogle Scholar
  34. 34.
    Cheng AKH, Ge B, Yu H (2007) Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Anal Chem 79:5158–5164CrossRefPubMedGoogle Scholar
  35. 35.
    Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231CrossRefPubMedGoogle Scholar
  36. 36.
    D’Andrea C, Neri F, Ossi PM, Santo N, Trusso S (2009) The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering. Nanotechnology 20:245606CrossRefPubMedGoogle Scholar
  37. 37.
    Fazio E, Neri F, Ossi PM, Santo N, Trusso S (2009) Growth process of nanostructured silver films pulsed laser ablated in high pressure inert gas. Appl Surf Sci 255:9676–9679CrossRefGoogle Scholar
  38. 38.
    Espinoza L, Hower JC, Jiang S (2007) Influence of salt and pH on the adsorption of fibrinogen and lysozyme to self-assembled monolayers using a surface plasmon resonance sensor. Journal of Undergraduate Research in Bioengineering 7:73–79Google Scholar
  39. 39.
    Kitagawa T, Hirota S (2006) Raman spectroscopy of proteins, handbook of vibrational spectroscopy. WileyGoogle Scholar
  40. 40.
    Fabian H, Mäntele W (2006) Infrared spectroscopy of proteins, handbook of vibrational spectroscopy. WileyGoogle Scholar
  41. 41.
    Siebert F, Hildebrandt P (2008) Structural studies, vibrational spectroscopy in life science. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  42. 42.
    Aliaga AE, Garrido C, Leyton P, Diaz G, Gomez-Jeria JS, Aguayo T, Clavijo E, Campos-Vallette MM, Sanchez-Cortes S (2010) SERS and theoretical studies of arginine. Spectrochim Acta A 76:458–463CrossRefGoogle Scholar
  43. 43.
    Podstawka E, Ozaki Y, Proniewicz LM (2005) Part III: surface-enhanced Raman scattering of amino acids and their homodipeptide monolayers deposited onto colloidal gold surface. Appl Spectrosc 59:1516–1526CrossRefPubMedGoogle Scholar
  44. 44.
    Panzner MJ, Bilinovich SM, Youngs WJ, Leeper TC (2011) Silver metallation of hen egg white lysozyme: X-ray crystal structure and NMR studies. Chem Commun 47:12479–12481CrossRefGoogle Scholar
  45. 45.
    David C, Foley S, Enescu M (2009) Protein S-S bridge reduction: a Raman and computational study of lysozyme interaction with TCEP. Phys Chem Chem Phys 11:2532–2542CrossRefPubMedGoogle Scholar
  46. 46.
    Kudryavtsev AB, Mirov SB, DeLucas LJ, Nicolete C, van der Woerd M, Bray TL, Basiev TT (1998) Polarized Raman spectroscopic studies of tetragonal lysozyme single crystals. Acta Crystallogr D Biol Crystallogr 54:1216–1229CrossRefPubMedGoogle Scholar
  47. 47.
    Sugeta H, Go A, Miyazawa T (1973) Vibrational spectra and molecular conformations of dialkyl disulfides. Bull Chem Soc Jpn 46:3407–3411CrossRefGoogle Scholar
  48. 48.
    Van Wart HE, Scheraga HA (1986) Agreement with the disulfide stretching frequency-conformation correlation of Sugeta, Go, and Miyazawa. Proc Natl Acad Sci U S A 83:3064–3067CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Carpentier P, Royant A, Weik M, Bourgeois D (2010) Raman-assisted crystallography suggests a mechanism of X-ray-induced disulfide radical formation and reparation. Structure 18:1410–1419CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. R. Agarwal
    • 1
    • 2
    Email author
  • M. Tommasini
    • 1
  • E. Ciusani
    • 3
  • A. Lucotti
    • 1
  • S. Trusso
    • 4
  • P. M. Ossi
    • 5
  1. 1.Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”Politecnico di MilanoMilanItaly
  2. 2.Biointerfaces Institute and Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonCanada
  3. 3.Istituto Nazionale Neurologico “Carlo Besta”MilanItaly
  4. 4.CNR-IPCF, Istituto per i Processi Chimico-Fisici del CNRMessinaItaly
  5. 5.Dipartimento di Energia & Centre for NanoEngineered MAterials and Surfaces—NEMASPolitecnico di MilanoMilanItaly

Personalised recommendations