Advertisement

Plasmonics

, Volume 13, Issue 6, pp 2081–2089 | Cite as

Improving Efficiency and Birefringence of an All-Dielectric Metasurface Quarter-Wave Plate Using Graphene

  • Edgar Owiti
  • Hanning Yang
  • Peng Liu
  • Calvine Ominde
  • Xiudong Sun
Article
  • 145 Downloads

Abstract

Conventional all-dielectric metasurfaces show remarkable properties including high efficiency and tunability of the optical response. However, extreme narrow bandwidth is a limitation that reduce their application in the photonic sensor devices. In this work, an efficient hybrid silicon-graphene metasurface is numerically proposed and designed. Through the sandwiched graphene layer, the structure shows unique quarter-wave properties, tunable through the dimensions of silicon, the Fermi energy of graphene, and an external gate voltage. Dynamic tuning is achieved by reversing the gate voltage: circular polarization state is switched between the right- and the left-handed states by reversing the gate voltage. A 95% polarization conversion ratio and a 96% ellipticity ratio are obtained while converting linearly polarized light into circularly polarized light in the near infrared. Additionally, by integrating graphene with silicon, the Q-factor and the trapped magnetic modes in the silicon are effectively modulated. The structure is compact and has an ultrathin design thickness of ∼0.1 λ, in the telecommunication wavelength. The above properties are essential for integration into photonic sensing devices and for compatibility with the CMOS devices.

Keywords

Metamaterials Polarization converter All-dielectric metasurface 

Notes

Funding Information

This work was supported by the National Key Basic Research Program of China (No. 2013CB328702) and the National Natural Science Foundation of China (NSFC) (Nos. 11374074 and 61308069).

References

  1. 1.
    Zhang J, MacDonald KF, Zheludev NI (2013) Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt Express 21(22):26721–26728CrossRefPubMedGoogle Scholar
  2. 2.
    Argyropoulos C (2015) Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene. Opt Express 23(18):23787–23797CrossRefPubMedGoogle Scholar
  3. 3.
    Kivshar Y, Miroshnichenko A (2017) Meta-optics with Mie resonances. Opt Photonics News 28(1):24–31CrossRefGoogle Scholar
  4. 4.
    Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339 (6125):1232009CrossRefPubMedGoogle Scholar
  5. 5.
    Liu Z, Li Z, Liu Z, Cheng H, Liu W, Tang C, Tian J (2017) Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics 4(8):2061–2069CrossRefGoogle Scholar
  6. 6.
    Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Mortensen NA (2014) Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14(8):4499–4504CrossRefPubMedGoogle Scholar
  7. 7.
    Ding F, Wang Z, He S, Shalaev VM, Kildishev AV (2015) Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. Acs Nano 9(4):4111–4119CrossRefPubMedGoogle Scholar
  8. 8.
    Kim J, Choudhury S, DeVault C, Zhao Y, Kildishev AV, Shalaev VM, Alu A, Boltasseva A (2016) Controlling the polarization state of light with plasmonic metal oxide metasurface. ACS Nano 10(10):9326–9333CrossRefGoogle Scholar
  9. 9.
    Chen M, Chang L, Xiuqian T, Xiao X, Chen H (2017) Plasmonic quarter-wave plate with U-shaped nanopatches. Optik-International Journal for Light and Electron Optics 134:179–186CrossRefGoogle Scholar
  10. 10.
    Guo T, Argyropoulos C (2016) Broadband polarizers based on graphene metasurfaces. Opt Lett 41 (23):5592–5595CrossRefPubMedGoogle Scholar
  11. 11.
    Wang X, Chen C, Pan L, Wang J (2016) A graphene-based Fabry-Pérot spectrometer in mid-infrared region. Sci Rep 6Google Scholar
  12. 12.
    Huidobro PA, Maier SA, Pendry JB (2017) Tunable plasmonic metasurface for perfect absorption. EPJ Applied Metamaterials 4:6CrossRefGoogle Scholar
  13. 13.
    Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan PM, Kono J, Xu Q (2013) Excitation and active control of propagating surface plasmon polaritons in graphene. Nano Lett 13(8):3698–3702CrossRefPubMedGoogle Scholar
  14. 14.
    Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Lukyanchuk B (2016) Optically resonant dielectric nanostructures. Science 354(6314):aag2472CrossRefPubMedGoogle Scholar
  15. 15.
    Petrov M, Babicheva V, Baryshnikova K, Belov P (2015) Substrate-mediated zero backscattering from dielectric metasurfaces. arXiv:1511.08473
  16. 16.
    Yan J, Liu P, Lin Z, Wang H, Chen H, Wang C, Yang G (2015) Directional Fano resonance in a silicon nanosphere dimer. Acs Nano 9(3):2968–2980CrossRefPubMedGoogle Scholar
  17. 17.
    Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J (2014) Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14(3):1394–1399CrossRefPubMedGoogle Scholar
  18. 18.
    Dai Y, Cai H, Ding H, Ning Z, Pan N, Zhu H, Shi Q, Wang X (2015) Near-infrared quarter-waveplate with near-unity polarization conversion efficiency based on silicon nanowire array. Opt Express 23(7):8929–8938CrossRefPubMedGoogle Scholar
  19. 19.
    Qiao P, Zhu L, Chew WC, Chang-Hasnain CJ (2015) Theory and design of two-dimensional high-contrast-grating phased arrays. Opt Express 23(19):24508–24524CrossRefPubMedGoogle Scholar
  20. 20.
    Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A (2015) Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 6, 7069–7069Google Scholar
  21. 21.
    Chen M, Cai J, Sun W, Chang L, Xiao X (2016) High-efficiency all-dielectric metasurfaces for broadband polarization conversion. Plasmonics 13(1):21–29CrossRefGoogle Scholar
  22. 22.
    Koenderink AF, Alù A, Polman A (2015) Nanophotonics: Shrinking light-based technology. Science 348(6234):516–521CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang Z, Luo J, Song M, Yu H (2017) Polarization filtering and phase controlling metasurfaces based on a metal-insulator-metal grating. Plasmonics 12(6):797–1803Google Scholar
  24. 24.
    Zheng X, Xiao Z, Ling X (2018) A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics 13(1):287–291CrossRefGoogle Scholar
  25. 25.
    Chikhi N, Lisitskiy M, Papari G, Tkachenko V, Andreone A (2016) A hybrid tunable THz metadevice using a high birefringence liquid crystal. Sci Rep 6, 34536–34536Google Scholar
  26. 26.
    Liu Z, Aydin K (2016) Enhanced infrared transmission through gold nanoslit arrays via surface plasmons in continuous graphene. Opt Express 24(24):27882–27889CrossRefPubMedGoogle Scholar
  27. 27.
    Wu L, Yang Z, Cheng Y, Gong R, Zhao M, Zheng Y, Duan J, Yuan X (2014) Circular polarization converters based on bi-layered asymmetrical split ring metamaterials. Appl Phys A 116(2):643–648CrossRefGoogle Scholar
  28. 28.
    Wang T, Wang Y, Luo L, Wang L, Zhang Z (2017) Tunable circular dichroism of achiral graphene plasmonic structures. Plasmonics 12(3):829–833CrossRefGoogle Scholar
  29. 29.
    Chou J, Parameswaran L, Kimball B, Rothschild M (2016) Electrically switchable diffractive waveplates with metasurface aligned liquid crystals. Opt Express 24(21):24265–24273CrossRefPubMedGoogle Scholar
  30. 30.
    Icenogle H, Platt BC, Wolfe WL (1976) Refractive indexes and temperature coefficients of germanium and silicon. Appl Opt 15(10):2348–2351CrossRefPubMedGoogle Scholar
  31. 31.
    Cheng J, Ansari-Oghol-Beig D, Mosallaei H (2014) Wave manipulation with designer dielectric metasurfaces. Opt Lett 39(21):6285–6288CrossRefPubMedGoogle Scholar
  32. 32.
    Zhao Y, Alù A (2011) Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 84(20):205428CrossRefGoogle Scholar
  33. 33.
    Kim J, Son H, Cho DJ, Geng B, Regan W, Shi S, Kim K, Zettl A, Shen YR, Wang F (2012) Electrical control of optical plasmon resonance with graphene. Nano Lett 12(11):5598–5602CrossRefPubMedGoogle Scholar
  34. 34.
    Li Q, Tian Z, Zhang X, Xu N, Singh R, Gu J, Lv P, Luo LB, Zhang S, Han J et al (2015) Dual control of active graphene–silicon hybrid metamaterial devices. 146–153 90:146Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Modern Optics, Department of PhysicsHarbin Institute of TechnologyHarbinChina
  2. 2.Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information TechnologyHarbinChina
  3. 3.Department of PhysicsJomo Kenyatta University of Agriculture TechnologyNairobiKenya
  4. 4.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanChina

Personalised recommendations