, Volume 13, Issue 6, pp 2047–2059 | Cite as

Structural SPR Tunability of Metal@Graphene Core–Shell Nano-Needle and Nano-Disk

  • Shivani BhardwajEmail author
  • R. P. Sharma


In present paper, a design of the graphene-coated metal (Ag/Au/Cu) nano-disk (2D) and nano-needle (1D) has been studied within the quasi-static approximation. The core@shell nano-geometries display dual dipolar plasmonic resonances which can be influenced by the resonance coupling between the plasmonic modes of the core and shell. These results indicate two different types of plasmon coupling and their wide range of SPR tunabilty: one is symmetric (1100~1600 nm) and other is anti-symmetric coupling (700~1120 nm). The resonance tunability in the symmetric and the anti-symmetric modes are strongly dependent on the sizes of the metallic core (semi major axes of the core 16~24 nm), graphene mono layer (GML) shell thickness (0.01~0.05 nm), and the ASR (0.06~0.12) of the core@shell nano-structure. Metal@GML nano-geometries are embedded in organic environment of the two different polymer matrices PCDTBT:PC71BM (εm=3.36) and PTB7:PC71BM (εm=3.47) that show an appropriate SPR tunability instead of non-coated metallic nano-disk and nano-needle. We have analyzed optical properties of coated and non-coated nano-geometries in terms of SPR tunability and extinction efficiency (Qext). For a fixed ASR, the symmetric modes of nano-disks have a wide range of SPR tunability in the IR range, while for nano-needles, both the modes having wide range of tunability in visible to IR region. Similarly for a fix TGML, the symmetric modes of nano-needles have a high tunability in the IR region. Hence, both the nano-geometries having a great potential for light trapping in the desirable range of wavelength of solar spectrum.


Core@shell nano-disk Core@shell nano-needle Graphene monolayer Surface plasmon resonances Extinction efficiency SPR tunability 



One of the authors Shivani Bhardwaj is thankful to MNRE India for providing the financial support for this research.


  1. 1.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213CrossRefPubMedGoogle Scholar
  2. 2.
    García MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 44(28):283001CrossRefGoogle Scholar
  3. 3.
    Kreibig U, Vollmer M (2013) Optical properties of metal clusters, vol 25. Springer Science & Business MediaGoogle Scholar
  4. 4.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business MediaGoogle Scholar
  5. 5.
    Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107(26):6269–6275. CrossRefGoogle Scholar
  6. 6.
    Noguez C (2007) Surface Plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111(10):3806–3819. CrossRefGoogle Scholar
  7. 7.
    Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487(4):153–164CrossRefGoogle Scholar
  8. 8.
    Han H, Fang Y, Li Z, Xu H (2008) Tunable surface plasma resonance frequency in ag core/au shell nanoparticles system prepared by laser ablation. Appl Phys Lett 92(2):023116CrossRefGoogle Scholar
  9. 9.
    Li Q, Zhang Z (2011) Broadband tunable and double dipole surface plasmon resonance by TiO2 Core/ag shell nanoparticles. Plasmonics 6(4):779–784CrossRefGoogle Scholar
  10. 10.
    Lv W, Phelan PE, Swaminathan R, Otanicar TP, Taylor RA (2013) Multifunctional core-shell nanoparticle suspensions for efficient absorption. J Solar Energy Eng 135(2):021004CrossRefGoogle Scholar
  11. 11.
    Prodan E, Nordlander P (2003) Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett 3(4):543–547CrossRefGoogle Scholar
  12. 12.
    Bhardwaj S, Uma R, Sharma R (2016) A study of metal@ graphene Core–Shell spherical Nano-geometry to enhance the SPR Tunability: influence of graphene monolayer Shell thickness. Plasmonics:1–9Google Scholar
  13. 13.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422CrossRefPubMedGoogle Scholar
  14. 14.
    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6(11):749–758CrossRefGoogle Scholar
  15. 15.
    Mak KF, Ju L, Wang F, Heinz TF (2012) Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun 152(15):1341–1349CrossRefGoogle Scholar
  16. 16.
    Koppens FHL, Chang DE, García de Abajo FJ (2011) Graphene Plasmonics: a platform for strong light–matter interactions. Nano Lett 11(8):3370–3377. CrossRefPubMedGoogle Scholar
  17. 17.
    Freitag M, Low T, Zhu W, Yan H, Xia F, Avouris P (2013) Photocurrent in graphene harnessed by tunable intrinsic plasmons. arXiv preprint arXiv:13060593Google Scholar
  18. 18.
    Zhou W, Lee J, Nanda J, Pantelides ST, Pennycook SJ, Idrobo J-C (2012) Atomically localized plasmon enhancement in monolayer graphene. Nat Nano 7(3):161–165 CrossRefGoogle Scholar
  19. 19.
    Hwang E, Sensarma R, Sarma SD (2010) Plasmon-phonon coupling in graphene. Phys Rev B 82(19):195406CrossRefGoogle Scholar
  20. 20.
    Jablan M, Soljačić M, Buljan H (2013) Plasmons in graphene: fundamental properties and potential applications. Proc IEEE 101(7):1689–1704CrossRefGoogle Scholar
  21. 21.
    Lu H, Cumming BP, Gu M (2015) Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths. Opt Lett 40(15):3647–3650CrossRefPubMedGoogle Scholar
  22. 22.
    Bhardwaj S, Pathak NK, Ji A, Uma R, Sharma RP (2017) Tunable properties of surface Plasmon resonance of metal Nanospheroid: graphene Plasmon interaction. Plasmonics 12(1):193–201. CrossRefGoogle Scholar
  23. 23.
    Echtermeyer T, Britnell L, Jasnos P, Lombardo A, Gorbachev R, Grigorenko A, Geim A, Ferrari A, Novoselov K (2011) Strong plasmonic enhancement of photovoltage in graphene. arXiv preprint arXiv:11074176Google Scholar
  24. 24.
    Stylianakis M, Konios D, Kakavelakis G, Charalambidis G, Stratakis E, Coutsolelos A, Kymakis E, Anastasiadis S (2015) Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material. Nano 7(42):17827–17835Google Scholar
  25. 25.
    Bagher AM (2014) Comparison of organic solar cells and inorganic solar cells. Int J Renew Sustain Energy 3:53–58CrossRefGoogle Scholar
  26. 26.
    Chen S, Tsang SW, Lai TH, Reynolds JR, So F (2014) Dielectric effect on the photovoltage loss in organic photovoltaic cells. Adv Mater 26(35):6125–6131CrossRefPubMedGoogle Scholar
  27. 27.
    Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. John Wiley & SonsGoogle Scholar
  28. 28.
    Palik ED (1998) Handbook of optical constants of solids, vol 3. Academic pressGoogle Scholar
  29. 29.
    Johnson PB, Christy RW (1972) Optical constants of the Noble metals. Phys Rev B 6(12):4370–4379CrossRefGoogle Scholar
  30. 30.
    Bao Q, Zhang H, Wang B, Ni Z, Lim CHYX, Wang Y, Tang DY, Loh KP (2011) Broadband graphene polarizer. Nat Photonics 5(7):411–415 CrossRefGoogle Scholar
  31. 31.
    Wang B, Zhang X, García-Vidal FJ, Yuan X, Teng J (2012) Strong coupling of surface Plasmon Polaritons in monolayer graphene sheet arrays. Phys Rev Lett 109(7):073901CrossRefPubMedGoogle Scholar
  32. 32.
    Hanson GW (2008) Dyadic Green's functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 56(3):747–757CrossRefGoogle Scholar
  33. 33.
    Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2):1086–1101CrossRefPubMedGoogle Scholar
  34. 34.
    Wang B, Zhang X, Yuan X, Teng J (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100(13):131111. CrossRefGoogle Scholar
  35. 35.
    Chew WC (1995) Waves and fields in inhomogeneous media, vol 522. IEEE press, New YorkGoogle Scholar
  36. 36.
    Peña-Rodríguez O, Pal U (2011) Au@ ag core–shell nanoparticles: efficient all-plasmonic Fano-resonance generators. Nanoscale 3(9):3609–3612CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Energy StudiesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations