Advertisement

Plasmonics

, Volume 13, Issue 6, pp 1987–1994 | Cite as

Fano Resonance Excited All-Optical XOR, XNOR, and NOT Gates with High Contrast Ratio

  • Rukhsar Zafar
  • Sarfaraz Nawaz
  • Mohammad Salim
Article
  • 105 Downloads

Abstract

We have presented all-optical XOR, XNOR, and NOT gates using metal-insulator-metal (MIM)-coupled ring resonator. The performance of the device is evaluated by finite difference in time-domain (FDTD) method. The proposed gate utilizes a unique phenomenon of Fano resonance to excite logic OFF/ON state. Fano resonance has quite asymmetric resonance profile and the transmission spectrum of Fano profile abruptly drops to a minimum value at the resonance condition. Due to this unique resonance phenomenon, a large value of contrast ratio is obtained. The proposed XNOR gate offers a contrast ratio (C.R.) of 20.66 dB while XOR and NOT gates offer C.R. 12.8 and 18.8 dB respectively. The variation of contrast ratio is also studied against different input wavelength and it is reported that the obtained value of contrast ratio is an optimum value for the proposed structure. The device is compact sized with small dimension 0.31 λ02, where λ0 = 1.55 μm. The proposed device opens up the avenues for designing on-chip optical gates in the field of high-speed optical communication networks.

Keywords

XNOR, XOR, and NOT gates FDTD method Fano resonance Contrast ratio 

References

  1. 1.
    Neda Beheshti et. al., Optical packet buffers for backbone internet routers, IEEE/ACM Trans Networking, 18, 5, 2010, pp 1599–1609CrossRefGoogle Scholar
  2. 2.
    Stefan A. Maier, Plasmonics: The Promise of Highly Integrated Optical Devices, IEEE Journal Of Selected Topics In Quantum Electronics, Vol. 12, No. 6, November/December 2006 (pp. 1671–1677)Google Scholar
  3. 3.
    Guoxi Wang, Hua Lu, Xueming Liu, Dong Mao, and Lina Duan, Tunable Multi-Channel Wavelength Demultiplexer based on MIM Plasmonic Nanodisk Resonators at Telecommunication Regime OSA Publishing, Optics Express Vol. 19, No. 4 February 2011, (Page no. 3513)CrossRefPubMedGoogle Scholar
  4. 4.
    Zhu JH, Qi JW, Shum P, Guang Huang X (November 2011) A simple nanometeric plasmonic narrow-band filter structure based on metal–insulator–metal waveguide. IEEE Trans Nanotechnol 10(6):1371–1376CrossRefGoogle Scholar
  5. 5.
    Jonsson M (2003) Optical interconnection technology in switches, routers, and optical cross-connects SPIE Optical Networks Magazine 4(4):20–34Google Scholar
  6. 6.
    Younis RM, Areed NFF, Obayya SSA (2014) Fully integrated AND and OR optical logic gates. IEEE Photon Technol Lett 26(19):1900–1903CrossRefGoogle Scholar
  7. 7.
    Kotb A, Zoiros KE (2013) Simulation of all-optical logic XNOR gate based on quantum-dot semiconductor optical amplifiers with amplified spontaneous emission. Opt Quantum Electron 45(II):1213–1221CrossRefGoogle Scholar
  8. 8.
    Salmanpour A, Mohammadnejad S, Bahrami A (2015) All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators. J Mod Opt 62:693–700CrossRefGoogle Scholar
  9. 9.
    Bao J, Xiao J, Fan L, Li X, Hai Y, Zhang T, Yang C (Oct. 2014) All optical NOR and NAND gates based on photonic crystal ring resonator. Opt Commun 329:109–112CrossRefGoogle Scholar
  10. 10.
    Jiang Y-C, Liu S-B, Zhang H-F, Kong X-K (Dec. 2014) Reconfigurable design of logic gates based on a two-dimensional photonic crystals waveguide structure. Opt, Commun 332:359–365CrossRefGoogle Scholar
  11. 11.
    Bao J, Xiao J, Fan L, Li X, Hai Y, Zhang T, Yang C (Oct. 2014) All-optical NOR and NAND gates based on photonic crystal ring resonator. Opt Commun 329:109–112CrossRefGoogle Scholar
  12. 12.
    Zafar R, Salim M (October 2015) Achievement of large normalized delay bandwidth product by exciting electromagnetic-induced transparency in plasmonic waveguide. IEEE J Quantum Electron 51(10):1–6CrossRefGoogle Scholar
  13. 13.
    Makarova M, Gong Y, Cheng S-L, Nishi Y, Yerci S, Li R, Negro LD, Vuckovic J (2010) Photonic crystal and plasmonic silicon-based light sources. IEEE Journal of Selected Topics in Quantum Electronics 16(1):132–140CrossRefGoogle Scholar
  14. 14.
    Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12(11):5784–5790CrossRefPubMedGoogle Scholar
  15. 15.
    Shaik E h, Rangaswamy N (2015) Design of photonic crystal-based all-optical AND gate using T-shaped waveguide. J Mod OptGoogle Scholar
  16. 16.
    Rani P, Kalra Y, Sinha RK (2013) Realization of AND gate in Y shaped photonic crystal waveguide. Opt Commun 298–299:227–231CrossRefGoogle Scholar
  17. 17.
    Raghda M. Younis; Nihal F. F. Areed; Salah S. A. Obayya Fully integrated AND and OR optical logic gates IEEE Photon Technol Lett, Volume: 26 Issue: 19 Oct.1, 1 2014. Page(s): 1900–1903Google Scholar
  18. 18.
    Zafar R, Salim M (2017) Analysis of asymmetry of Fano resonance in plasmonic metal-insulator-metal waveguide. ELSEVIER Photon Nanostruct Photon 23:1–6CrossRefGoogle Scholar
  19. 19.
    Li R, An H, Huang W, He Y (2018) Molybdenum oxide nanosheets meet ascorbic acid: tunable surface plasmon resonance and visual colorimetric detection at room temperature. Sensors Actuators B 259:59–63CrossRefGoogle Scholar
  20. 20.
    Huang W, Xie Z, Deng Y, He Y (January 2018) 3,3′,5,5′-tetramethylbenzidine-based quadruple-channel visual colorimetric sensor array for highly sensitive discrimination of serum antioxidants. Sensors Actuators B Chem 254:1057–1060CrossRefGoogle Scholar
  21. 21.
    Zafar R, Salim M (2014) Wideband Slow Light achievement in MIM Plasmonic waveguide by controlling Fano Resonance. ELSEVIER, Infrared Physics & Technology 67:25–29CrossRefGoogle Scholar
  22. 22.
    Fan S, Suh W, Joannopoulos JD (2003) Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A 20(3)CrossRefGoogle Scholar
  23. 23.
    Zafar R, Salim M (2015) Enhanced figure of merit in plasmonic refractive index sensor based on Fano resonance. IEEE Sensors J 15(11)Google Scholar
  24. 24.
    Matsumoto A, Kuwata K, Matsushita A, Akahane K, Utaka K (2013) Numerical analysis of ultrafast performances of all-optical logic-gate devices integrated with InAs QD-SOA and ring resonators. IEEE J Quantum Electron 49(1):51–58CrossRefGoogle Scholar
  25. 25.
    Ooi KJA, Chu HS, Bai P, Ang LK (2014) Electro-optical graphene plasmonic logic gates. Opt Lett 39(6):1629–1632CrossRefPubMedGoogle Scholar
  26. 26.
    Kiyanoosh Goudarzi, Ali Mir, Iman Chaharmahali and, Dariush Goudarzi, All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal Optics & Laser Technology Volume 78, Part B, April 2016, Pages 139–142
  27. 27.
    Yuhei Ishizaka; Yuki Kawaguchi; Kunimasa Saitoh; Masanori Koshiba (2010) Design of all-optical XOR and AND logic gates based on multi-mode interference devices IEEE internal conference on Laser and Fiber-Optical Networks Modeling (LFNM)Google Scholar
  28. 28.
    Rani P, Kalra Y, Sinha RK (2015) Design of all optical logic gates in photonic crystal waveguides. Optik 12:950–955CrossRefGoogle Scholar
  29. 29.
    Kakarla R, Venkitesh D (2016) Demonstration of optical header recognition for BPSK data using novel design of logic gates. Opt Commun 363:117–122CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Swami Keshvanand Institute of Technology, Management and GramothanJaipurIndia
  2. 2.Malviya National Institute of TechnologyJaipurIndia

Personalised recommendations