, Volume 13, Issue 6, pp 1977–1985 | Cite as

Enhancing Diamond Fluorescence via Optimized Nanorod Dimer Configurations

  • András Szenes
  • Balázs Bánhelyi
  • Tibor Csendes
  • Gábor Szabó
  • Mária Csete


Light extraction from silicon (SiV) and nitrogen (NV) vacancy diamond color centers coupled to plasmonic silver and gold nanorod dimers was numerically improved. Numerical optimization of the coupled dipolar emitter—plasmonic nanorod dimer configurations was realized to attain the highest possible fluorescence enhancement by simultaneously improving the color centers excitation and emission through antenna resonances. Conditional optimization was performed by setting a criterion regarding the minimum quantum efficiency of the coupled system (cQE) to minimize losses. By comparing restricted symmetric and allowed asymmetric dimers, the advantages of larger degrees of freedom achievable in asymmetric configurations was proven. The highest 2.59 × 108 fluorescence enhancement was achieved with 46.08% cQE via NV color center coupled to an asymmetric silver dimer. This is 3.17-times larger than the 8.19 × 107 enhancement in corresponding symmetric silver dimer configuration, which has larger 68.52% cQE. Among coupled SiV color centers the highest 1.04 × 108 fluorescence enhancement was achieved via asymmetric silver dimer with 37.83% cQE. This is 1.06-times larger than the 9.83 × 107 enhancement in corresponding symmetric silver dimer configuration, which has larger 57.46% cQE. Among gold nanorod coupled configurations the highest fluorescence enhancement of 4.75 × 104 was shown for SiV color center coupled to an asymmetric dimer with 21.8% cQE. The attained enhancement is 8.48- (92.42-) times larger than the 5.6 × 103 (5.14 × 102) fluorescence enhancement achievable via symmetric (asymmetric) gold nanorod dimer coupled to SiV (NV) color center, which is accompanied by 16.01% (7.66%) cQE.


Localized surface plasmon resonance Nanorod dimer Diamond vacancy center Fluorescence enhancement Numerical configuration optimization 



Mária Csete acknowledges that the project was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The authors would like to thank Dávid Vass and Géza Veszprémi for figure preparation.

Funding information

The research was supported by National Research, Development and Innovation Office-NKFIH through project “Optimized nanoplasmonics” K116362.

Supplementary material

11468_2018_713_MOESM1_ESM.pdf (827 kb)
ESM 1 (PDF 827 kb)


  1. 1.
    Maze JR, Stanwix PL, Hodges JS, Hong S, Taylor JM, Cappellaro P, Jiang L, Gurudev Dutt MV, Togan E, Zibrov AS, Yacoby A, Walsworth RL, Lukin MD (2008) Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455:644–647CrossRefPubMedGoogle Scholar
  2. 2.
    Benjamin SC, Lovett BW, Smith JM (2009) Prospects for measurement-based quantum computing with solid state spins. Laser Photonics Rev 3:556–574CrossRefGoogle Scholar
  3. 3.
    Aharonovich I, Greentree AD, Prawer S (2011) Diamond photonics. Nat Photonics 5:397–405CrossRefGoogle Scholar
  4. 4.
    Bernien H, Hensen B, Pfaff W, Koolstra G, Blok MS, Robledo L, Taminiau TH, Markham M, Twitchen DJ, Childress L, Hanson R (2013) Heralded entanglement between solid-state qubits separated by three metres. Nature 497:86–90CrossRefPubMedGoogle Scholar
  5. 5.
    Manson NB, Harrison JP, Sellars MJ (2006) Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys Rev B 74:104303CrossRefGoogle Scholar
  6. 6.
    Maze JR, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E, Lukin MD (2011) Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. New J Phys 13:025025CrossRefGoogle Scholar
  7. 7.
    Bayat K, Choy J, Baroughi MF, Meesala S, Loncar M Efficient, uniform, and large area microwave magnetic coupling to NV centers in diamond using double split-ring resonators. Nano Lett 14:1208–1213CrossRefPubMedGoogle Scholar
  8. 8.
    Gali A, Maze JR (2013) Ab initio study of the split silicon-vacancy defect in diamond: electronic structure and related properties. Phys Rev B 88:235205CrossRefGoogle Scholar
  9. 9.
    Rogers LJ, Jahnke KD, Doherty MW, Dietrich A, McGuinness LP, Müller C, Teraji T, Sumiya H, Isoya J, Manson NB, Jelezko F (2014) Electronic structure of the negatively charged silicon-vacancy center in diamond. Phys Rev B 89:235101CrossRefGoogle Scholar
  10. 10.
    Rogers LJ, Jahnke KD, Teraji T, Marseglia L, Müller C, Naydenov B, Schauffert H, Kranz C, Isoya J, McGuinness LP, Jelezko F (2014) Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun 5:4739CrossRefPubMedGoogle Scholar
  11. 11.
    Vlasov II, Shiryaev AA, Rendler T, Steinert S, Lee SY, Antonov D, Vörös M, Jelezko F, Fisenko AV, Semjonova LF, Biskupek J, Kaiser U, Lebedev OI, Sildos I, Hemmer PR, Konov VI, Gali A, Wrachtrupm (2014) Molecular-sized fluorescent nanodiamonds. J Nat Nanotechnol 9:54–58CrossRefGoogle Scholar
  12. 12.
    Davis TJ, Gómez DE (2017) Colloquium: an algebraic model of localized surface plasmons and their interactions. Rev Mod Phys 89:011003CrossRefGoogle Scholar
  13. 13.
    Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  14. 14.
    Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensor Actuat B Chem 195:332–351CrossRefGoogle Scholar
  15. 15.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–828CrossRefGoogle Scholar
  16. 16.
    Pelton M (2015) Modified spontaneous emission in nanophotonic structures. Nat Photonics 9:427–435CrossRefGoogle Scholar
  17. 17.
    Yang Y, Zhen B, Hsu CW, Miller OD, Joannopoulos JD, Soljačić M (2016) Optically thin metallic films for high-radiative-efficiency plasmonics. Nano Lett 16:4110–4117CrossRefPubMedGoogle Scholar
  18. 18.
    Tame MS, McEnery KR, Özdemir SK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9:329–340CrossRefGoogle Scholar
  19. 19.
    Taminiau TH, Stefani FD, van Hulst NF (2008) Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt Express 16(14):10858–10866CrossRefPubMedGoogle Scholar
  20. 20.
    Taminiau TH, Stefani FD, van Hulst NF (2008) Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency. New J Phys 10:105005CrossRefGoogle Scholar
  21. 21.
    Hoang TB, Akselrod GM, Argyropoulos C, Huang J, Smith DR, Mikkelsen MH (2015) Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat Commun 6:7788CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dorfmüller J, Vogelgesang R, Khunsin W, Rockstuhl C, Etrich C, Kern K (2010) Plasmonic nanowire antennas: experiment, simulation, and theory. Nano Lett 10:3596–3603CrossRefPubMedGoogle Scholar
  23. 23.
    Hancu IM, Curto AG, Castro-Lopez M, Kuttge M, van Hulst NF (2014) Multipolar interference for directed light emission. Nano Lett 14:166–171CrossRefPubMedGoogle Scholar
  24. 24.
    Mahmoud KR, Hussein M, Hameed MFO, Obayya SSA (2017) Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission. J Opt Soc Am B 34(10):2041–2049CrossRefGoogle Scholar
  25. 25.
    Muskens OL, Giannini V, Sánchez-Gil JA, Gómez Rivas J (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett 7:2871–2875CrossRefPubMedGoogle Scholar
  26. 26.
    Rogobete L, Kaminski F, Agio M, Sandoghdar V (2007) Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt Lett 32:1623–1625CrossRefPubMedGoogle Scholar
  27. 27.
    Toroghi S, Kik PG (2012) Cascaded field enhancement in plasmon resonant dimer nanoantennas compatible with two-dimensional nanofabrication methods. Appl Phys Lett 101:013116CrossRefGoogle Scholar
  28. 28.
    Duan H, Fernández-Domínguez AI, Bosman M, Maier SA, Yang JKW (2012) Nanoplasmonics: classical down to the nanometer scale. Nano Lett 12:1683–1689CrossRefPubMedGoogle Scholar
  29. 29.
    Andersen SKH, Khumar S, Bozhevolnyi SI (2017) Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna. Nano Lett 17:3889–3895CrossRefPubMedGoogle Scholar
  30. 30.
    El-Toukhy YM, Hussein M, Hameed MFO, Obayya SSA. (2017) Plasmonics 1-8Google Scholar
  31. 31.
    Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658CrossRefPubMedGoogle Scholar
  32. 32.
    Abb M, Wang Y, Albella P, de Groot CH, Aizpurua J, Muskens OL (2012) Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas. ACS Nano 6:6462–6470CrossRefPubMedGoogle Scholar
  33. 33.
    Aharonovich I, Englund D, Toth M (2016) Solid-state single-photon emitters. Nat Photonics 10:631–641CrossRefGoogle Scholar
  34. 34.
    Choy JT, Hausmann BJM, Babinec TM, Bulu I, Khan M, Maletinsky P, Yacoby A, Lončar M (2011) Enhanced single-photon emission from a diamond–silver aperture. Nat Photonics 5:738–743CrossRefGoogle Scholar
  35. 35.
    de Leon NP, Shields BJ, Yu CL, Englund DE, Akimov AV, Lukin MD, Park H (2012) Tailoring light-matter interaction with a nanoscale plasmon resonator. Phys Rev Lett 108:226803CrossRefPubMedGoogle Scholar
  36. 36.
    Kolesov R, Grotz B, Balasubramanian G, RStöhr RJ, Nicolet AAL, Hemmer PR, Jelezko F, Wrachtrup J (2009) Wave–particle duality of single surface plasmon polaritons. Nat Phys 5:470–474CrossRefGoogle Scholar
  37. 37.
    Wolf SA, Rosenberg I, Rapaport R, Bar-Gill N (2015) Purcell-enhanced optical spin readout of nitrogen-vacancy centers in diamond. Phys Rev B 92:235410CrossRefGoogle Scholar
  38. 38.
    Szenes A, Bánhelyi B, Szabó LZ, Szabó G, Csendes T, Csete M (2017) Enhancing diamond color center fluorescence via optimized plasmonic nanorod configuration. Plasmonics 12:1263–1280CrossRefGoogle Scholar
  39. 39.
    Kumar S, Huck A, Chen Y, Andersen UL (2013) Coupling of a single quantum emitter to end-to-end aligned silver nanowires. Appl Phys Lett 102:103106CrossRefGoogle Scholar
  40. 40.
    Cheng S, Song J, Wang Q, Liu J, Li H, Zhang B (2015) Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond. Appl Phys Lett 107:211905CrossRefGoogle Scholar
  41. 41.
    Schell AW, Kewes G, Hanke T, Leitenstorfer A, Bratschitsch R, Benson O, Aichele T (2011) Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. Opt Express 19:79147920CrossRefGoogle Scholar
  42. 42.
    Hui YY, Lu YC, Su LJ, Fang CY, Hsu JH, Chang HC (2013) Tip-enhanced sub-diffraction fluorescence imaging of nitrogen-vacancy centers in nanodiamonds. Appl Phys Lett 102_013102Google Scholar
  43. 43.
    Csendes T, Garay BM, Bánhelyi B (2006) A verified optimization technique to locate chaotic regions of Hénon systems. J Glob Optim 35:145–160CrossRefGoogle Scholar
  44. 44.
    Csendes T, Pál L, Sendín JOH, Banga JR (2008) The GLOBAL optimization method revisited. Optim Lett 2:445–454CrossRefGoogle Scholar
  45. 45.
    Geddes CD (2017) Surface plasmon enhanced, coupled and controlled fluorescence. John Wiley & Sons, Inc., HobokenCrossRefGoogle Scholar
  46. 46.
    Maliwal BP, Malicka J, Ignacy G, Gryczynski Z, Lakowicz JR (2003) Fluorescence properties of labeled proteins near silver colloid surfaces. Biopolymers 70:585–594CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Optics and Quantum ElectronicsUniversity of SzegedSzegedHungary
  2. 2.Department of Computational OptimizationUniversity of SzegedSzegedHungary

Personalised recommendations