Advertisement

Plasmonics

, Volume 13, Issue 6, pp 1971–1976 | Cite as

Polarization Conversion Based on Mie-Type Electromagnetically Induced Transparency (EIT) Effect in All-Dielectric Metasurface

  • Lei Zhu
  • Liang Dong
  • Jing Guo
  • Fan-Yi Meng
  • Xun Jun He
  • Chun Hui Zhao
  • Qun Wu
Article
  • 287 Downloads

Abstract

In this paper, we propose an all-dielectric metasurface to realize the linear-to-circular polarization conversion of resonantly transmitted waves. This metasurface is composed of two intersection bars and four circle bricks. It has numerically demonstrated that the electromagnetic (EM) couplings between dielectric bar and bricks lead to the famous electromagnetically induced transparent (EIT) effect. Subsequently, based on Mie-type EIT resonances for two incident polarizations, the linear-to-circular polarization conversion occur at about 0.47 THz. More importantly, the thickness of our device is subwavelength and it is very transparency for EM waves. We also investigate the dependences of device performance on incident angles of EM waves and structure thicknesses. Device good performance is almost kept at about 0.47 THz for slightly incident angle tilts (θ ≤ 30°) and tiny changes of substrate thickness. But device performance is strongly dependent on dielectric thickness. These results are very important for its integration to the existing terahertz devices, or its application to future polarization controls.

Keywords

Polarization conversion Electromagnetically induced transparent (EIT) metasurface Mie resonance 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61501275), the China postdoctoral science foundation (Grant No. 2017M611357), the Science Foundation Project of Heilongjiang Province of China (Grant No. QC2015073), young creative talents training plan of general universities of Heilongjiang Province of China (UNPYSCT-2017152), and the Technology Bureau of Qiqihar city of Heilongjiang Province of China (Grant No. GYGG-201511).

References

  1. 1.
    Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337.  https://doi.org/10.1126/science.1210713 CrossRefPubMedGoogle Scholar
  2. 2.
    Larouche S, Tsai YJ, Tyler T, Jokerst NM, Smith DR (2012) Infrared metamaterial phase holograms. Nat Mater 11:450–454.  https://doi.org/10.1038/nmat3278 CrossRefPubMedGoogle Scholar
  3. 3.
    Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F (2012) A broadband, background-free quarterwave plate based on plasmonic metasurfaces. Nano Lett 12:6328–6333.  https://doi.org/10.1021/nl303445u CrossRefPubMedGoogle Scholar
  4. 4.
    Cong L, Cao W, Zhang X, Tian Z, Gu J, Singh R, Han J, Zhang W (2013) A perfect metamaterial polarization rotator. Appl Phys Lett 103:171107.  https://doi.org/10.1063/1.4826536 CrossRefGoogle Scholar
  5. 5.
    Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J (2014) Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14:1394–1399.  https://doi.org/10.1021/nl4044482 CrossRefPubMedGoogle Scholar
  6. 6.
    Park J, Kang J, Kim SJ, Liu X, Brongersma ML (2017) Dynamic reflection phase and polarization control in metasurfaces. Nano Lett 17:407–413.  https://doi.org/10.1021/acs.nanolett.6b04378 CrossRefPubMedGoogle Scholar
  7. 7.
    Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, Taylor AJ, Dalvit DA, Chen HT (2013) Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340:1304–1307.  https://doi.org/10.1126/science.1235399 CrossRefPubMedGoogle Scholar
  8. 8.
    Guo Y, Yan L, Pan W, Luo B (2015) Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface. Opt Express 23:27566–27575.  https://doi.org/10.1364/OE.23.027566 CrossRefPubMedGoogle Scholar
  9. 9.
    Mutlu M, Ekmel O (2012) A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling. Appl Phys Lett 100:051909.  https://doi.org/10.1063/1.3682591 CrossRefGoogle Scholar
  10. 10.
    Zhu L, Meng FY, Dong L, Fu JH, Zhang F, Wu Q (2013) Polarization manipulation based on electromagnetically induced transparency-like (EIT-like) effect. Opt Express 21:32099–32110.  https://doi.org/10.1364/OE.21.032099 CrossRefPubMedGoogle Scholar
  11. 11.
    Gao X, Han X, Cao WP, Li HO, Ma HF, Cui TJ (2015) Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface. IEEE T Antenn Propag 63:3522–3530.  https://doi.org/10.1109/TAP.2015.2434392 CrossRefGoogle Scholar
  12. 12.
    Mutlu M, Akosman AE, Serebryannikov AE, Ozbay E (2011) Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Opt Lett 36:1653–1655.  https://doi.org/10.1364/OL.36.001653 CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang L, Zhou P, Chen H, Lu H, Xie H, Zhang L, Deng L (2016) Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X-and K-band. Sci Rep 6:33826.  https://doi.org/10.1038/srep33826 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Cui J, Huang C, Pan W, Pu M, Guo Y, Luo X (2016) Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror. Sci Rep 6:30771.  https://doi.org/10.1038/srep30771
  15. 15.
    Cao H, Liang J, Wu X, Pi Y, Xu H, Liu J, Zhang Y (2016) Dual-band polarization conversion based on non-twisted Q-shaped metasurface. Opt Commun 370:311–318.  https://doi.org/10.1016/j.optcom.2016.03.036 CrossRefGoogle Scholar
  16. 16.
    Cao H, Wu X, Chen Z, Zhu C, Tan X, Zhang Y (2016) Compact e-shape metasurface with dual-band circular polarization conversion. Opt Commun 381:48–55.  https://doi.org/10.1016/j.optcom.2016.06.046 CrossRefGoogle Scholar
  17. 17.
    Dong L, Zhu L (2014) Tunneling effects induced transparent polarization manipulation. J Phys D Appl Phys 47:155101.  https://doi.org/10.1088/0022-3727/47/15/155101 CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Alù A (2011) Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 84:205428.  https://doi.org/10.1103/PhysRevB.84.205428 CrossRefGoogle Scholar
  19. 19.
    Zhang FL, Zhao Q, Lan CW, He X, Zhang WH, Zhou J, Qiu K (2014) Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial. Appl Phys Lett 104:131907.  https://doi.org/10.1063/1.4870647 CrossRefGoogle Scholar
  20. 20.
    Bi K, Zeng L, Chen H, Fang C, Wang Q, Lei M (2015) Magnetic coupling effect of Mie resonance-based metamaterial with inclusion of split ring resonators. J Alloy Comp 646:680–684.  https://doi.org/10.1016/j.jallcom.2015.05.247 CrossRefGoogle Scholar
  21. 21.
    Chen CK, Lai YC, Yang YH, Chen CY, Yen TJ (2012) Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials. Opt Express 20:6952–6960.  https://doi.org/10.1364/OE.20.006952 CrossRefPubMedGoogle Scholar
  22. 22.
    Miroshnichenko AE, Kivshar YS (2012) Fano resonances in all-dielectric oligomers. Nano Lett 12:6459–6463.  https://doi.org/10.1021/nl303927q CrossRefPubMedGoogle Scholar
  23. 23.
    Kruk S, Hopkins B, Kravchenko II, Miroshnichenko A, Neshev DN, Kivshar YS (2016) Invited article: broadband highly efficient dielectric metadevices for polarization control. APL Photonics 1(3):030801.  https://doi.org/10.1063/1.4949007 CrossRefGoogle Scholar
  24. 24.
    Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Luk’yanchuk B (2016) Optically resonant dielectric nanostructures. Science 354(6314):aag2472.  https://doi.org/10.1126/science.aag2472 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang J, Liu W, Yuan X, Qin S (2014) Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials. J Opt 16(12):125102.  https://doi.org/10.1088/2040-8978/16/12/125102 CrossRefGoogle Scholar
  26. 26.
    Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phy Rev Lett 101:047401.  https://doi.org/10.1103/PhysRevLett.101.047401 CrossRefGoogle Scholar
  27. 27.
    Wei Z, Li X, Zhong N, Tan X, Zhang X, Liu H, Liang R (2017) Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device. Plasmonics 12(3):641–647.  https://doi.org/10.1007/s11468-016-0309-z CrossRefGoogle Scholar
  28. 28.
    Chiam SY, Singh R, Rockstuhl C, Lederer F, Zhang W, Bettiol AA (2009) Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys Rev B 80(15):153103.  https://doi.org/10.1103/PhysRevB.80.153103 CrossRefGoogle Scholar
  29. 29.
    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8(9):758–762.  https://doi.org/10.1038/nmat2495 CrossRefPubMedGoogle Scholar
  30. 30.
    Muhammad N, Khan AD (2015) Tunable Fano resonances and electromagnetically induced transparency in all-dielectric holey block. Plasmonics 10(6):1687–1693.  https://doi.org/10.1007/s11468-015-9989-z CrossRefGoogle Scholar
  31. 31.
    Zhu L, Dong L (2014) Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances. J Opt 16:125105.  https://doi.org/10.1088/2040-8978/16/12/125105 CrossRefGoogle Scholar
  32. 32.
    Zhang F, Zhao Q, Zhou J, Wang S (2013) Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial. Opt Express 21(17):19675–19680.  https://doi.org/10.1364/OE.21.019675 CrossRefPubMedGoogle Scholar
  33. 33.
    Shi H, Li J, Zhang A, Wang J, Xu Z (2014) Tri-band transparent cross-polarization converters using a chiral metasurface. Chin Phys B 23(11):118101.  https://doi.org/10.1088/1674-1056/23/11/118101 CrossRefGoogle Scholar
  34. 34.
    Shao J, Li J, Wang Y, Li J, Dong Z, Zhou L (2016) Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime. Chin Phys B 25(5):058103.  https://doi.org/10.1088/1674-1056/25/5/058103 CrossRefGoogle Scholar
  35. 35.
    Zhang L, Zhou P, Lu H, Zhang L, Xie J, Deng L (2016) Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator. Opt Mater Exp 6(4):1393.  https://doi.org/10.1364/OME.6.001393 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Communication and Electronics Engineering InstituteQiqihar UniversityQiqiharChina
  2. 2.College of Information and Communication EngineeringHarbin Engineering UniversityHarbinChina
  3. 3.School of Electronic EngineeringBeijing University of Posts and TelecommunicationsBeijingChina
  4. 4.Science and Technology on Electronic Test & Measurement Laboratory, Ministry of EducationNorth University of ChinaTaiyuanChina
  5. 5.Electronics and Information InstituteHarbin Institute of TechnologyHarbinChina
  6. 6.Department of Electronic Science and technologyHarbin University of Science and TechnologyHarbinChina

Personalised recommendations