, Volume 13, Issue 6, pp 1941–1946 | Cite as

Optical Transmission in Arrayed Asymmetric Multilayered Ultra-Thin Metal Stripes

  • Ling Guo
  • Jun MaEmail author
  • Shouhong Chen
  • Cuifeng Xu


An arrayed structure of asymmetric multilayered ultra-thin metal stripes is proposed to achieve a narrow transmission peak in an ultra-broad transmission valley, which is formed due to the destructive multiple-interference tunneling existed in an ultra-thin metal and dielectric multilayers. The transmission peak is influenced by two resonant modes. One is the coupled gap surface plasmon (cg-SP) resonance mode confined in entire multilayered ridges, the other is the modified gap surface plasmon (g-SP) mode within metal-dielectric layers. Furthermore, the transmission mode and the stopband are tunable in a wide range through designing the dimension parameters. The proposed plasmonic structure is promising for wideband filters.


Surface plasmons Resonance Metamaterials 


Funding Information

The National Natural Science Foundation of China (Grant No. 61671008); Natural Science Foundation of Guangxi Province (Grant No. 2015GXNSFDA139003); Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (Grant Nos. YQ14115, YQ17103).


  1. 1.
    Zhang S, Genov D A, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401CrossRefGoogle Scholar
  2. 2.
    Papasimakis N, Fu Y H, Fedotov V A, Prosvirnin S L, Tsai D P, Zheludev N I (2009) Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl Phys Lett 94(21):211902CrossRefGoogle Scholar
  3. 3.
    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10(4):1103–1107CrossRefPubMedGoogle Scholar
  4. 4.
    Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel A P, Ustinov A V, Anlage S M, Soukoulis C M (2011) Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys Rev Lett 107(4):043901CrossRefPubMedGoogle Scholar
  5. 5.
    Lu H, Liu X, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85(5):053803CrossRefGoogle Scholar
  6. 6.
    Lu H, Gan X, Mao D, Zhao J (2017) Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photon Res 5(3):162–167CrossRefGoogle Scholar
  7. 7.
    Uddin M J, Magnusson R (2013) Highly efficient color filter array using resonant Si3N4 gratings. Opt Express 21(10):12495–12506CrossRefPubMedGoogle Scholar
  8. 8.
    Foley J M, Young S M, Phillips J D (2013) Narrowband mid-infrared transmission filtering of a single layer dielectric grating. Appl Phys Lett 103(7):071107CrossRefGoogle Scholar
  9. 9.
    Zeuner F, Muldarisnur M, Hildebrandt A, Förstner J, Zentgraf T (2015) Coupling mediated coherent control of localized surface plasmon polaritons. Nano Lett 15(6):4189–4193CrossRefPubMedGoogle Scholar
  10. 10.
    Liu Z, Liu G, Fu G, Liu X, Wang Y (2016) Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial. Opt Express 24(5):5020–5025CrossRefPubMedGoogle Scholar
  11. 11.
    Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18(17):17922–17927CrossRefPubMedGoogle Scholar
  12. 12.
    Spevak I S, Nikitin A Y, Bezuglyi E V, Levchenko A, Kats A V (2009) Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films. Phys Rev B 79(16):161406CrossRefGoogle Scholar
  13. 13.
    Braun J, Gompf B, Kobiela G, Dressel M (2009) How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Phys Rev Lett 103(20):203901CrossRefPubMedGoogle Scholar
  14. 14.
    Sun Z, Zuo X, Lin Q (2010) Plasmon-induced nearly null transmission of light through gratings in very thin metal films. Plasmonics 5(1):13–19CrossRefGoogle Scholar
  15. 15.
    Xiao S, Zhang J, Peng L, Jeppesen C, Malureanu R, Kristensen A, Mortensen N A (2010) Nearly zero transmission through periodically modulated ultrathin metal films. Appl Phys Lett 97(7):071116CrossRefGoogle Scholar
  16. 16.
    Xiao S, Mortensen N A (2011) Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays. Opt Lett 36(1):37–39CrossRefPubMedGoogle Scholar
  17. 17.
    Sun Z, Zuo X, Li J (2011) Optical transmission through multilayered ultra-thin metal gratings. Plasmonics 6(4):745CrossRefGoogle Scholar
  18. 18.
    Xiang D, Wang L L, Zhai X, Wang L, Pan A L (2011) Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits. Opt Commun 284(1):471–475CrossRefGoogle Scholar
  19. 19.
    Zhou L, Huang CP, Wu S, Yin XG, Wang YM, Wang QJ, Zhu YY (2010) Enhanced optical transmission through metal-dielectric multilayer gratings. Appl Phys Lett 97(1):011905CrossRefGoogle Scholar
  20. 20.
    Guo L, Sun Z (2016) Plasmon-induced transparency in binary arrays of ultrathin metal stripes for narrow-band transmission. Opt Lett 41(3):591–594CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang S, Bao K, Halas N J, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663CrossRefPubMedGoogle Scholar
  22. 22.
    Park J H, Kodigala A, Ndao A, Kanté B (2017) Hybridized metamaterial platform for nano-scale sensing. Opt Express 25(13):15590–15598CrossRefPubMedGoogle Scholar
  23. 23.
    Wu D, Liu Y, Yu L, Yu Z, Chen L, Li R, Ma R, Liu C, Zhang J, Ye H (2017) Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Sci Rep 7:srep45210CrossRefGoogle Scholar
  24. 24.
    Zhao W, Leng X, Jiang Y (2015) Fano resonance in all-dielectric binary nanodisk array realizing optical filter with efficient linewidth tuning. Opt Express 23(5):6858–6866CrossRefPubMedGoogle Scholar
  25. 25.
    Niraula M, Yoon J W, Magnusson R (2014) Mode-coupling mechanisms of resonant transmission filters. Opt Express 22(21):25817–25829CrossRefPubMedGoogle Scholar
  26. 26.
    Shyiq Amin M, Woong Yoon J, Magnusson R (2013) Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly. Appl Phys Lett 103(13):131106CrossRefGoogle Scholar
  27. 27.
    Zhao W, Jiang Y (2015) Experimental demonstration of sharp Fano resonance within binary gold nanodisk array through lattice coupling effects. Optics Lett 40(1):93–96CrossRefGoogle Scholar
  28. 28.
    Guo L, Sun Z (2015) Cooperative optical trapping in asymmetric plasmon nanocavity arrays. Opt Express 23(24):31324–31333CrossRefPubMedGoogle Scholar
  29. 29.
    Sun Z, Zuo X (2011) Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings. Plasmonics 6(1):83–89CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic Engineering and AutomationGuilin University of Electronic TechnologyGuilinChina
  2. 2.Guangxi Key Laboratory of Automatic Detecting and InstrumentsGuilinChina

Personalised recommendations