, Volume 13, Issue 6, pp 1921–1928 | Cite as

Optothermally Controlled Charge Transfer Plasmons in Au-Ge2Sb2Te5 Core-Shell Dimers

  • Burak GerisliogluEmail author
  • Arash Ahmadivand
  • Nezih Pala


Functional and reversible plasmonic resonances across the visible and near-infrared spectrum have opened new avenues for developing advanced next-generation nanophotonic devices. In this study, by using optothermally controlled phase-change material (PCM) for plasmonic nanostructures, we successfully induced highly tunable charge transfer plasmon (CTP) resonance modes. To this end, we have chosen a two-member dimer assembly consisting of gold cores and Ge2Sb2Te5 (GST) shells in distant, touching, and overlapping regimes. We show that switching between amorphous (dielectric) and crystalline (conductive) phases of GST allows for achieving tunable dipolar and CTP resonances and enables an effective interplay between these modes along the near-infrared spectrum. By analyzing electromagnetically calculated spectral responses for the dimer antenna in tunneling and direct charge transfer regimes, we confirmed that the induced CTPs in touching and overlapping regimes are highly controllable and pronounced in comparison to the quantum tunneling regime. We also use the precise, fast, and controllable switching between dipolar and CTP resonant modes to develop a telecommunication switch based on a simple metallodielectric dimer. The proposed structures can help designing optothermally controlled devices without morphological variations in the geometry of the design, and having strong potential for advanced plasmon modulation and fast data routing.


Charge transfer plasmons Metallodielectric dimer Phase-change material Switching Plasmonics 


Funding Information

This work is supported by the Army Research Laboratory (ARL) Multiscale Multidisciplinary Modeling of Electronic Materials (MSME) Collaborative Research Alliance (CRA) (Grant No. W911NF-12-2-0023, Program Manager: Dr. Meredith L. Reed).


  1. 1.
    Barnes WL (2006) Surface plasmon–polariton length scales: a route to sub-wavelength optics. J Opt A Pure Appl Opt 8(4):S87–S93. CrossRefGoogle Scholar
  2. 2.
    Gerislioglu B, Ahmadivand A, Pala N (2017) Functional quadrumer clusters for switching between Fano and charge transfer plasmons. IEEE Photon Technol Lett 29(24):2226–2229. CrossRefGoogle Scholar
  3. 3.
    Gerislioglu B, Ahmadivand A, Pala N (2017) Single- and multimode beam propagation through an optothermally controllable Fano clusters-mediated waveguide. IEEE J Lightw Technol 35(22):4961–4966. CrossRefGoogle Scholar
  4. 4.
    Abril I, Garcia-Molina R, Denton CD, Pérez-Pérez FJ, Arista NR (1998) Dielectric description of wakes and stopping powers in solids. Phys Rev A 58(1):357–366. CrossRefGoogle Scholar
  5. 5.
    Gerislioglu B, Ahmadivand A, Pala N (2017) Hybridized plasmons in graphene nanorings for extreme nonlinear optics. Opt Maters 73:729–735. CrossRefGoogle Scholar
  6. 6.
    Ahmadivand A, Gerislioglu B, Pala N (2017) Graphene optical switch based on charge transfer plasmons. Phys Status Solidi RRL 11(11):1700285. CrossRefGoogle Scholar
  7. 7.
    Ahmadivand A, Sinha R, Karabiyik M, Vabbina PK, Gerislioglu B, Kaya S, Pala N (2017) Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators. J Nanopart Res 19(1):3. CrossRefGoogle Scholar
  8. 8.
    Néstor PL, Elías AL, Berkdemir A, Castro-Beltran A, Gutiérrez HR, Feng S, Lv R, Hayashi T, López-Urías F, Ghosh S, Muchharla B (2013) Photosensor device based on few-layered WS2 films. Adv Funct Mater 23:5511–5517CrossRefGoogle Scholar
  9. 9.
    Byers CP, Zhang H, Swearer DF, Yorulmaz M, Hoener BS, Huang D, Hoggard A, Chang WS, Mulvaney P, Ringe E, Halas NJ, Nordlander P, Link S, Landes CF (2015) From tunable core-shell nanoparticles to plasmonic drawbridges: active control of nanoparticle optical properties. Sci Adv 1(11):e1500988. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Novo C, Funston AM, Mulvaney P (2008) Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol 3(10):598–602. CrossRefPubMedGoogle Scholar
  11. 11.
    Dondapati SK, Ludemann M, Muller R, Schwieger S, Schwemer A, Handel B, Kwiatkowski D, Djiango M, Runge E, Klar TA (2012) Voltage-induced adsorbate damping of single gold nanorod plasmons in aqueous solution. Nano Lett 12(3):1247–1252. CrossRefPubMedGoogle Scholar
  12. 12.
    Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg JJ (2012) Revealing the quantum regime in tunnelling plasmonics. Nature 491(7425):574–577. CrossRefPubMedGoogle Scholar
  13. 13.
    Marinica DC, Kazansky AK, Nordlander P, Aizpurua J, Borisov AG (2012) Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett 12(3):1333–1339. CrossRefPubMedGoogle Scholar
  14. 14.
    Tame MS, McEnery KR, Özdemir ŞK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9(6):329–340. CrossRefGoogle Scholar
  15. 15.
    Tan SF, Wu L, Yang JK, Bai P, Bosman M, Nijhuis CA (2014) Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343(6178):1496–1499. CrossRefPubMedGoogle Scholar
  16. 16.
    Ahmadivand A, Gerislioglu B, Pala N (2017) Azimuthally and radially excited charge transfer plasmon and Fano lineshapes in conductive sublayer-mediated nanoassemblies. J Opt Am A 34(11):2052–2056. CrossRefGoogle Scholar
  17. 17.
    Ahmadivand A, Sinha R, Gerislioglu B, Karabiyik M, Pala N, Shur M (2016) Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies. Opt Lett 41(22):5333–5336. CrossRefPubMedGoogle Scholar
  18. 18.
    Gerislioglu B, Ahmadivand A, Karabiyik M, Sinha R, Pala N (2017) VO2-based reconfigurable antenna platform with addressable microheater matrix. Adv Electron Mater 3(9):1700170. CrossRefGoogle Scholar
  19. 19.
    Ahmadivand A, Gerislioglu B, Pala N (2017) Active control over the interplay the dark and hidden sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells. J Phys Chem C 121(36):19966–19974. CrossRefGoogle Scholar
  20. 20.
    Kumar M, Vora-ud A, Seetawan T, Han JG (2016) Study of pulsed-DC sputtering induced Ge2Sb2Te5 thin films using facile thermoelectric measurement. Mater Des 98:254–261. CrossRefGoogle Scholar
  21. 21.
    Vora-ud A, Rittiruam M, Kumar M, Han JG, Seetawan T (2016) Molecular simulation for thermoelectric properties of c-axis oriented hexagonal GeSbTe model clusters. Mater Des 89:957–963. CrossRefGoogle Scholar
  22. 22.
    Ahmadivand A, Gerislioglu B, Sinha R, Karabiyik M, Pala N (2017) Optical switching using transition from dipolar to charge transfer plasmon modes in Ge2Sb2Te5 bridged metallodielectric dimers. Sci Rep 7:42807. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kumar M, Vora-ud A, Seetawan T, Han JG (2016) Enhancement in thermoelectric properties of cubic Ge2Sb2Te5 thin films by introducing structural disorder. Energy Technol 4(3):375–379. CrossRefGoogle Scholar
  24. 24.
    Ahmadivand A, Gerislioglu B, Pala N (2017) Thermally controllable multiple high harmonics generation by phase-change materials-mediated Fano clusters. arXiv preprint arXiv: 1712.03802Google Scholar
  25. 25.
    Sebastian A, Le Gallo M, Krebs D (2014) Crystal growth within a phase change memory cell. Nat Commun 5:4317CrossRefGoogle Scholar
  26. 26.
    Bakan G, Gerislioglu B, Dirisaglik F, Jurado Z, Sullivan L, Dana A, Lam C, Gokirmak A, Silva H (2016) Extracting the temperature distribution on a phase-change memory cell during crystallization. J Appl Phys 120(16):164504. CrossRefGoogle Scholar
  27. 27.
    Palik ED (1998) Handbook of optical constants of solids. Academic press, San DiegoGoogle Scholar
  28. 28.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. CrossRefGoogle Scholar
  29. 29.
    Shportko K, Kremers S, Woda M, Lencer D, Robertson J, Wuttig M (2008) Resonant bonding in crystalline phase-change materials. Nat Mater 7(8):653–658. CrossRefPubMedGoogle Scholar
  30. 30.
    Wu L, Duan H, Bai P, Bosman M, Yang JK, Li E (2013) Fowler–Nordheim tunnelling induced charge transfer plasmons between nearly touching nanoparticles. ACS Nano 7(1):707–716. CrossRefPubMedGoogle Scholar
  31. 31.
    Ahmadivand A, Gerislioglu B, Sinha R, Vabbina PK, Karabiyik M, Pala N (2017) Excitation of terahertz charge transfer plasmons in metallic fractal structures. J Infrared Milli Terahz Waves 38(8):992–1003. CrossRefGoogle Scholar
  32. 32.
    Miroshnichenko AE, Kivshar YS (2012) Fano resonances in all-dielectric oligomers. Nano Lett 12(12):6459–6463. CrossRefPubMedGoogle Scholar
  33. 33.
    Chong KE, Hopkins B, Staude I, Miroshnichenko AE, Dominguez J, Decker M, Neshev DN, Brener Il, Kivshar YS (2014) Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10(10):1985–1990. CrossRefPubMedGoogle Scholar
  34. 34.
    Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903. CrossRefGoogle Scholar
  35. 35.
    Wen F, Zhang Y, Gottheim S, King NS, Zhang Y, Nordlander P, Halas NJ (2015) Charge transfer plasmons: optical frequency conductances and tunable infrared resonances. ACS Nano 9(6):6428–6435. CrossRefPubMedGoogle Scholar
  36. 36.
    Pérez-González O, Zabala N, Borisov AG, Halas NJ, Nordlander P, Aizpurua J (2010) Optical spectroscopy of conductive junctions in plasmonic cavities. Nano Lett 10(8):3090–3095. CrossRefPubMedGoogle Scholar
  37. 37.
    Jeans SJH (1908) The mathematical theory of electricity and magnetism. Cambridge UniversityGoogle Scholar
  38. 38.
    Ahmadivand A, Gerislioglu B, Pala N (2017) Large-modulation-depth polarization-sensitive plasmonic toroidal terahertz metamaterial. IEEE Photon Technol Lett 29(21):1860–1863. CrossRefGoogle Scholar
  39. 39.
    Chang W–S, Lassiter JB, Swanglap P, Sobhani H, Khatua S, Nordlander P, Halas NJ, Link S (2012) A plasmonic Fano switch. Nano Lett 12(9):4977–4982. CrossRefPubMedGoogle Scholar
  40. 40.
    Zheng F, Chen Z, Zhang J (1999) A finite-difference time-domain method without the Courant stability conditions. IEEE Microw Guided Wave Lett 9(11):441–443. CrossRefGoogle Scholar
  41. 41.
    Lorentz HA (1916) Theory of electrons. Teubner, Leipzig Chap. 4Google Scholar
  42. 42.
    Aspnes DE (1916) Local-field effects and effective-medium theory: a microscopic perspective. Am J Phys 50:704–709CrossRefGoogle Scholar
  43. 43.
    Chen X, Chen Y, Yan M, Qiu M (2012) Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6(3):2550–2557. CrossRefPubMedGoogle Scholar
  44. 44.
    Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev 7(2):171–187. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringFlorida International UniversityMiamiUSA

Personalised recommendations