, Volume 13, Issue 6, pp 1907–1919 | Cite as

Comparison and Evaluation of Silver Probe Preparation Techniques for Tip-Enhanced Raman Spectroscopy

  • L. RamanauskaiteEmail author
  • Huizhong Xu
  • E. Griskonis
  • D. Batiuskaite
  • V. Snitka


In this work, the different procedures for the fabrication of Ag probes for tip-enhanced Raman spectroscopy (TERS) in a top illumination/detection setup are proposed and tested. We focus on technologically simple methods allowing Si tips coated with plasmonic silver nanostructures and bulk metal Ag tips with good shape reproducibility to be produced for atomic force microscopy (AFM) feedback setup. The preparation of Ag TERS probes was based on chemical deposition and vacuum sputtering of Ag on the tips of commercially available Si cantilevers. A straightforward technique for the fabrication of bulk metal Ag probes by the electrochemical etching of Ag microwires was also proposed. Chemically coated, sputtered, and electrochemically etched TERS tips were characterized by scanning electron microscopy (SEM). The produced tips were tested for TERS measurements using graphene oxide (GO) as the target analyte in a top illumination setup. A comparative analysis of enhancement factors (EF) for the different types of tips (probes) is presented in this work.


Tip-enhanced Raman spectroscopy Plasmonic silver nanostructures Galvanic displacement Electroless deposition Sputtering Electrochemical etching Full metal tip 



The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency.

Funding Information

This work was funded by the Government of Lithuania through an European Space Agency Contract No. 4000115694/15/NL/Nde under the PECS (Plan for European Cooperating States).


  1. 1.
    Yeo BS, Stadler J, Schmid T, Zenobi R, Zhang W (2009) Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem Phys Lett 472(1-3):1–13. CrossRefGoogle Scholar
  2. 2.
    Deckert-Gaudig T, Taguchi A, Kawata S, Deckert V (2017) Tip-enhanced Raman spectroscopy—from early developments to recent advances. Chem Soc Rev 46(13):4077–4110. CrossRefPubMedGoogle Scholar
  3. 3.
    Kurouski D (2017) Advances of tip-enhanced Raman spectroscopy (TERS) in electrochemistry, biochemistry, and surface science. Vib Spectrosc 91:3–15. CrossRefGoogle Scholar
  4. 4.
    Blum C, Opilik L, Atkin JM, Braun K, Kämmer SB, Kravtsov V, Kumar N, Lemeshko S, Li JF, Luszcz K, Maleki T, Meixner AJ, Minne S, Raschke MB, Ren B, Rogalski J, Roy D, Stephanidis B, Wang X, Zhang D, Zhongi J, Zenobi R (2014) Tip-enhanced Raman spectroscopy—an interlaboratory reproducibility and comparison study. J Raman Spectrosc 45(1):22–31. CrossRefGoogle Scholar
  5. 5.
    Zeng ZC, Huang SC, Wu DY, Meng LY, Li MH, Huang TX, Zhong JH, Wang X, Yang ZL, Ren B (2015) Electrochemical tip-enhanced Raman spectroscopy. J Am Chem Soc 137:11928CrossRefPubMedGoogle Scholar
  6. 6.
    Fujita Y, Walke P, De Feyter S, Uji-i H (2016) Remote excitation-tip-enhanced Raman scattering microscopy using silver nanowire. Jpn J Appl Phys 55(8S1):08NB03. CrossRefGoogle Scholar
  7. 7.
    Kurouski D, Postiglione T, Deckert-Gaudig T, Deckert V, Lednev IK (2013) Unraveling near-field and far-field relationships for 3D SERS substrates—a combined experimental and theoretical analysis. Analyst 138:6CrossRefGoogle Scholar
  8. 8.
    Deckert V, Deckert-Gaudig T, Diegel M, Götz I, Langelüddecke L, Schneidewind H, Sharma G, Singh P, Singh P, Trautmann S, Zeisbergera M, Zhang Z (2015) Spatial resolution in Raman spectroscopy. Faraday Discuss 177:9–20. CrossRefPubMedGoogle Scholar
  9. 9.
    Faulds K, Hernandez-Santana A, Smith WE (2010) The inorganic chemistry of surface enhanced Raman scattering (SERS). Spectrosc Prop Inorg and Organomet Compd 41:1. CrossRefGoogle Scholar
  10. 10.
    Huang T, Huang SC, Li MH, Zeng ZC, Wang X, Ren B Tip-enhanced Raman spectroscopy: tip-related issues. Anal Bioanal Chem 407:8177–8195CrossRefPubMedGoogle Scholar
  11. 11.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  12. 12.
    Vasilchenko VE, Kharintsev SS, Salakhov MK (2015) Highly rough tapered gold and silver tips for polarization-controlled TERS performance. J Phys Conf Ser 613:012017. CrossRefGoogle Scholar
  13. 13.
    Kharintsev SS, Noskov AI, Loos J (2011) Near-field optical taper antennas fabricated with a highly replicable ac electrochemical etching method. Nanotechnology 22:025202CrossRefPubMedGoogle Scholar
  14. 14.
    Eligal L, Culfaz F, McCaughan V, Cade NI, Richards D (2009) Etching gold tips suitable for tip-enhanced near-field optical microscopy. Rev Sci Instrum 80(3):033701. CrossRefPubMedGoogle Scholar
  15. 15.
    Manuel Lopes M, Timothée Toury T, De La Chapelle ML, Bonaccorso F, Gucciardi PG (2013) Fast and reliable fabrication of gold tips with sub-50 nm radius of curvature for tip-enhanced Raman spectroscopy. RevSciInstrum 84:073702Google Scholar
  16. 16.
    Li-Kun Yang LK, Teng-Xiang Huang TX, Zhi-Cong Zeng ZC, Mao-Hua Li MH, Xiang Wang X, Fang-Zu Yang FZ, Ren B (2015) Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition. Nanoscale 7:18225–18231CrossRefPubMedGoogle Scholar
  17. 17.
    Kharintsev SS, Hoffmann GG, Dorozhkin PS, De With G, Loos J (2007) Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging. Nanotechnology 18:315502CrossRefGoogle Scholar
  18. 18.
    Snitka V, Rodriguez RD, Lendraitis V (2011) Novel gold cantilever for nano-Raman spectroscopy of graphene. Microelectron Eng 88(8):2759–2762. CrossRefGoogle Scholar
  19. 19.
    Asghari-Khiavi M, Wood BR, Hojati-Talemi P, Downes A, McNaughtona D, Mechlera A (2012) Exploring the origin of tip-enhanced Raman scattering; preparation of efficient TERS probes with high yield. J Raman Spectrosc 43(2):173–180. CrossRefGoogle Scholar
  20. 20.
    Pettinger B, Schambach P, Villagómez CJ, Scott N Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annu Rev Phys Chem 63:379CrossRefPubMedGoogle Scholar
  21. 21.
    Sun WX, Shen ZX (2001) A practical nanoscopic Raman imaging technique realized by near-field enhancement. Mater Phys Mech 4:17–21Google Scholar
  22. 22.
    Anderson MS, Pike WT (2002) A Raman-atomic force microscope for apertureless-near-field spectroscopy and optical trapping. Rev Sci Instrum 73(3):1198–1203. CrossRefGoogle Scholar
  23. 23.
    Mehtani D, Lee N, Hartschuh RD, Kisliuk A, Foster MD, Sokolov AP, Maguire JF (2005) Nano-Raman spectroscopy with side-illumination optics. J Raman Spectrosc 36:1068–1075CrossRefGoogle Scholar
  24. 24.
    Zhang D, Wang X, Broun K, Egelhaaf HJ, Fleischer M, Hennemann L, Hintz H, Stanciu C, Brabec CJ, Kern DP, Meixner AJ (2009) Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials. J Raman Spectrosc 40(10):1371–1376. CrossRefGoogle Scholar
  25. 25.
    Gucciardi PG, Valmalette JC (2010) Different longitudinal optical—transverse optical mode amplification in tip enhanced Raman spectroscopy of GaAs(001). Appl Phys Lett 97(26):263104. CrossRefGoogle Scholar
  26. 26.
    Huang TX, Huang SC, Li MH, Zheng ZC, Wang X, Ren B (2015) Tip-enhanced Raman spectroscopy: tip-related issues. Anal Bioanal Chem 407(27):8177–8195. CrossRefPubMedGoogle Scholar
  27. 27.
    Andrew Chan KL, Kazarian SG (2011) Tip-enhanced Raman mapping with top-illumination AFM. Nanotechnology 22:175701CrossRefGoogle Scholar
  28. 28.
    Deckert-Gaudig T, Richter M, Knebel D, Jahnke T, Jankowski T, Stock E, Deckert V (2014) A modified transmission tip-enhanced Raman scattering(TERS) setup provides access to opaque samples. Appl Spectrosc 68:916CrossRefPubMedGoogle Scholar
  29. 29.
    Zaleski S, Wilson AJ, Mattei M, Chen X, Goubert G, Cardinal MF, Willets KA, Van Duyne RP (2016) Investigating nanoscale electrochemistry with surface- and tip-enhanced Raman spectroscopy. Acc Chem Res 49(9):2023–2030. CrossRefPubMedGoogle Scholar
  30. 30.
    Touzalin T, Dauphin AL, Joiret S, Lucas IT, Maisonhaute E (2016) Tip enhanced Raman spectroscopy imaging of opaque samples in organic liquid. Phys Chem Chem Phys 18:15510CrossRefPubMedGoogle Scholar
  31. 31.
    Gorbunov AA, Wolf B, Edelmann J (1993) The use of silver tips in scanning tunneling microscopy. Rev Sci Instrum 64(8):2393–2394. CrossRefGoogle Scholar
  32. 32.
    Dickmann K, Demming F, Jersch J (1996) New etching procedure for silver scanning tunneling microscopy tips. Rev Sci Instrum 67(3):845–846. CrossRefGoogle Scholar
  33. 33.
    Zhang C, Gao B, Chen LG, Meng QS, Yang H, Zhang R, Tao X, Gao HY, Liao Y, Dong ZC (2011) Fabrication of silver tips for scanning tunneling microscope induced luminescence. Rev Sci Instrum 82:083101CrossRefPubMedGoogle Scholar
  34. 34.
    Iwami M, Uehara Y, Ushioda S (1998) Preparation of silver tips for scanning tunneling microscopy imaging. Rev Sci Instrum 69(11):4010–4011. CrossRefGoogle Scholar
  35. 35.
    Lloyd JS, Williams A, Rickman RH, McCowen A, Dunstan PR (2011) Reproducible electrochemical etching of silver probes with a radius of curvature of 20 nm for tip-enhanced Raman applications. Appl Phys Lett 99(14):143108. CrossRefGoogle Scholar
  36. 36.
    Hodgson PA, Wang Y, Mohammad AA, Kruse P (2013) Note: electrochemical etching of silver tips in concentrated sulfuric acid. Rev Sci Instrum 84(2):026109. CrossRefPubMedGoogle Scholar
  37. 37.
    Sasaki SS, Perdue SM, Perez AR, Tallarida N, Majors JH, Apkarian VA, Lee J (2013) Automated electrochemical etching and polishing of silver scanning tunneling microscope tips. Rev Sci Instrum 84(9):096109. CrossRefPubMedGoogle Scholar
  38. 38.
    Brejna PR, Griffiths PR (2010) Electroless deposition of silver onto silicon as a method of preparation of reproducible surface-enhanced Raman spectroscopy substrates and tip-enhanced Raman spectroscopy tips. Appl Spectrosc 64(5):493–499. CrossRefPubMedGoogle Scholar
  39. 39.
    Wang JJ, Saito Y, Batchelder DN, Kirkham J, Robinson C, Smith DA (2005) Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy. Appl Phys Lett 86(26):263111. CrossRefGoogle Scholar
  40. 40.
    Hayazawa N, Saito Y, Kawata S (2004) Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Appl Phys Lett 85:6239–6241CrossRefGoogle Scholar
  41. 41.
    Kim T, Jeon KS, Heo K, Kim HM, Park J, Suh YD, Hong S (2013) Multilayered nano-prism vertex tips for tip-enhanced Raman spectroscopy and imaging. Analyst 138:5588–5593CrossRefPubMedGoogle Scholar
  42. 42.
  43. 43.
  44. 44.
    ( accessed 18 Aug 2017
  45. 45.
  46. 46.
    Schmid T, Yeo BS, Zhang, Zenobi R (2007) In Tip enhancement Eds: Kawata S, Shalaev V M Amsterdam: ElsevierGoogle Scholar
  47. 47.
    Fujita Y, Walke P, De Feyter S, Uji-i H (2016) Tip-enhanced Raman scattering microscopy: recent advance in tip production. Jpn J Appl Physics 55:08NA02CrossRefGoogle Scholar
  48. 48.
    Moretti M, Zaccaria RP, Descrovi E, Das G, Leoncini M, Liberale C, De Angelis F, Di Fabrizio E (2013) Reflection-mode TERS on insulin amyloid fibrils with top-visual AFM probes. Plasmonics 8(1):25–33. CrossRefPubMedGoogle Scholar
  49. 49.
    Goubert G, Van Duyne RP (2017) Raman spectroscopy: tipping point. Nat Nanotechnol 12:100CrossRefPubMedGoogle Scholar
  50. 50.
    Behr N, Raschke MB (2008) Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement. J Phys Chem C 112(10):3766–3773. CrossRefGoogle Scholar
  51. 51.
    Sun WX, Shen ZX (2003) Optimizing the near field around silver tips. J Opt Soc Am A 20(12):2254. CrossRefGoogle Scholar
  52. 52.
    Dongmo LS, Villarrubia JS, Jones SN, Renegar TB, Postek MT, Song JF (2000) Experiment test of blind tip reconstruction for scanning probe microscopy. Ultramicroscopy 85:141–153CrossRefGoogle Scholar
  53. 53.
    Ramanauskaite L, Xu H, Snitka V (2016) Localized plasmon stimulated nanochemistry of graphene oxide on a SERS substrate. Chem Phys Chem 17:873–878CrossRefPubMedGoogle Scholar
  54. 54.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. CrossRefGoogle Scholar
  55. 55.
    Palik ED (1991) Handbook of optical constants of solids, II edn. Academic Press, OrlandoGoogle Scholar
  56. 56.
    Bao W, Staffaroni M, Jeffrey Bokor J, Salmeron MB, Yablonovitch E, Cabrini S, Weber-Bargioni A, Schuck PJ (2013) Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips. Opt Express 21:8166–8176CrossRefPubMedGoogle Scholar
  57. 57.
    Schlesinger M, Paunovic M (2010) Modern electroplating, 5th edn. Wiley, New Jersey. CrossRefGoogle Scholar
  58. 58.
    Okamoto F 2007 Etching solution for silver U.S. Patent 3860423Google Scholar
  59. 59.
    Kumar N, Rae A, Debdulal Roy D (2014) Accurate measurement of enhancement factor in tip-enhanced Raman spectroscopy through elimination of far-field artefacts. Appl Phys Lett 104(12):123106. CrossRefGoogle Scholar
  60. 60.
    Stadler J, Schmid T, Zenobi R (2012) Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale 4:1856–1870CrossRefPubMedGoogle Scholar
  61. 61.
    Lehmann V (2002) Electrochemistry of silicon: instrumentation, science, materials and applications. Wiley-VCH Verlag GmbH, WeinheimCrossRefGoogle Scholar
  62. 62.
    Djokic SS, Magagnin L (2014) Electrodeposition and surface finishing. Fundamentals and applications. Springer, New YorkCrossRefGoogle Scholar
  63. 63.
    Dutheil P, Thomann AL, Lecas T, Brault P, Vayer M (2015) Sputtered Ag thin films with modified morphologies: influence on wetting property. Appl Surf Sci 347:101–108CrossRefGoogle Scholar
  64. 64.
    Kundu S, Hazra S, Banerjee S, Sanyal MK, Mandal SK, Chaudhuri S, Pal AK (1998) Morphology of thin silver film grown by dc sputtering on Si(001). J.Phys D Appl Phys 31:L73CrossRefGoogle Scholar
  65. 65.
    Zhang C, Chen BQ, Li ZY (2016) Influence of tip geometry on the spatial resolution of tip enhanced Raman mapping. Chin Phys B 25:095203CrossRefGoogle Scholar
  66. 66.
    Kawata S, Ichimura T, Taguchi A, Kumamoto Y (2017) Nano-Raman scattering microscopy: resolution and enhancement. Chem Rev 117(7):4983–5001. CrossRefGoogle Scholar
  67. 67.
    Richard-Lacroix M, Zhang Y, Dong Z, Deckert V (2017) Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception. Chem Soc Rev 46(13):3922–3944. CrossRefPubMedGoogle Scholar
  68. 68.
    Sun WX, Shen ZX (2001) A practical nanoscopic imaging technique realized by near-field enhancement. Mater Phys Mech 4:17–21Google Scholar
  69. 69.
    Saito Y, Motohashi M, Hayazawa N, Iyoki M, Kawata S (2006) Nanoscale characterization of strained silicon by tip-enhanced Raman spectroscope in reflection mode. Appl Phys Lett 88:143109CrossRefGoogle Scholar
  70. 70.
    Watanabe H, Ishida Y, Hayazawa N, Inouye Y, Kawata S (2004) Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule. Phys Rev B 69:155418CrossRefGoogle Scholar
  71. 71.
    Roy D, Wang J, Williams K (2009) Novel methodology for estimating the enhancement factor for tip-enhanced Raman spectroscopy. J Appl Phys 105(1):013530. CrossRefGoogle Scholar
  72. 72.
    Zhang W, Yeo BS, Schmid T, Zenobi R (2007) Single molecule tip-enhanced Raman spectroscopy with silver tips. J Phys Chem C 111(4):1733–1738. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. Ramanauskaite
    • 1
    Email author
  • Huizhong Xu
    • 2
  • E. Griskonis
    • 1
  • D. Batiuskaite
    • 3
  • V. Snitka
    • 1
  1. 1.Research Center for Microsystems and NanotechnologyKaunas University of TechnologyKaunasLithuania
  2. 2.Department of Physics & AstronomySan Francisco State UniversitySan FranciscoUSA
  3. 3.Department of Biology, Faculty of Natural SciencesVytautas Magnus UniversityKaunasLithuania

Personalised recommendations