pp 1–7 | Cite as

Compact Plasmonic Lens Based on Nanoslits in the Tree Age Chart Arrangement

  • Mehdi Ashari-BavilEmail author
  • Mingli Dong
  • Chuanbo LiEmail author
  • Shuai Feng
  • Lianqing Zhu


A novel plasmonic planar slit lens, consisting of five slits in tree age chart arrangement with gradually decreasing widths and interspace distances, is proposed. The slits width and interspaces are related with each other by introducing a scaling constant k that was previously introduced in nanoparticle chains. At specific k values, the light propagates extraordinarily through the slits and causes focusing features beneath the metallic layer. The underlying physics behind the focusing is because of additional phase imposed on traveling light through the slits and their constructive interference. Numerical simulation is used to demonstrate the focusing behavior. Results show that the slit width should not be larger than half wavelength, and the scaling constant should be between 0.3 and 0.4. Salient features of the proposed structure are ultra-compactness, large transmission, and ease of fabrication.


Surface plasmons Plasmonic lens Planar slit configuration 


Funding Information

This work was supported by the Program for Changjiang Scholars and Innovative Research team in University (Grant IRT -16R07).


  1. 1.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer.
  2. 2.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  3. 3.
    Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66:163–182CrossRefGoogle Scholar
  4. 4.
    Yang F, Sambles JR (2002) Resonant transmission of microwaves through a narrow metallic slit. Phys Rev Lett 89:063901CrossRefGoogle Scholar
  5. 5.
    Martín-Moreno L, García-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86:1114–1117CrossRefGoogle Scholar
  6. 6.
    García-Vidal FJ, Lezec HJ, Ebbesen TW, Martín-Moreno L (2003) Multiple paths to enhance optical transmission through a single subwavelength slit. Phys Rev Lett 90:4CrossRefGoogle Scholar
  7. 7.
    García-Vidal FJ, Martín-Moreno L, Lezec HJ, Ebbesen TW (2003) Focusing light with a single subwavelength aperture flanked by surface corrugations. Appl Phys Lett 83:4500–4502CrossRefGoogle Scholar
  8. 8.
    Bavil MA, Deng Q, Zhou Z, Gao L, Ye R (2014) Extraordinary transmission through gain-assisted silicon-based nanohole arrays in telecommunication regimes. Opt Lett 9:4506CrossRefGoogle Scholar
  9. 9.
    He S, Wang Z, Liu Q (2016) Positive focal shift of gallium nitride high contrast grating focusing reflectors. Mater Res Express 3:1–7CrossRefGoogle Scholar
  10. 10.
    Saxena S, Chaudhary RP, Singh A, Awasthi S, Shukla S (2014) Plasmonic micro lens for extraordinary transmission of broadband light. Sci Rep 4:5586Google Scholar
  11. 11.
    Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, Fan S (2009) Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 9:235–238CrossRefGoogle Scholar
  12. 12.
    Shi H, Wang C, Du C, Luo X, Dong X, Gao H (2005) Beam manipulating by metallic nano-slits with variant widths. Opt Express 13:6815CrossRefGoogle Scholar
  13. 13.
    Sahakyan K, Nerkararyan K (2017) Numerical analysis of light non-resonant transmission through a sub-wavelength slit at angular incidence. Armen J Phys 10:30–35Google Scholar
  14. 14.
    Bavil MA, Zhou Z, Deng Q (2013) Active unidirectional propagation of surface plasmons at subwavelength slits. Opt Express 21:17066–17076CrossRefGoogle Scholar
  15. 15.
    Wang J, Wang Y, Zhang X, Yang K, Wang Y, Liu S, Song Y (2010) Splitting and unidirectional excitation of surface plasmon polaritons by two uniform metallic nanoslits with a nanocavity antenna. J Mod Opt 57:1630–1634CrossRefGoogle Scholar
  16. 16.
    Plasmonic ST, Odom TW, Yang A, Li Z, Knudson MP, Hyrn A, Odom J, W T, Wang W, Aydin K (2015) Unidirectional lasing from template- crystals. ACS Nano 9:11582Google Scholar
  17. 17.
    Pala R, Peschel U, Atwater HA (2014) Nanoscale conducting oxide PlasMOStor. Nano Lett 14:6463CrossRefGoogle Scholar
  18. 18.
    Bavil MA, Liu Z, Zhou W, Li C, Cheng B (2016) Photocurrent enhancement by utilizing unidirectional excitation of surface plasmons. Proc SPIE Int Soc Opt Eng 12.6:1709Google Scholar
  19. 19.
    King NS, Liu L, Yang X, Cerjan B, Everitt HO, Nordlander P, Halas NJ (2015) Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing. ACS Nano 9:10628–10636CrossRefGoogle Scholar
  20. 20.
    Law S, Yu L, Rosenberg A, Wasserman D (2013) All-semiconductor plasmonic nanoantennas for infrared sensing. Nano Lett 13:4569–4574CrossRefGoogle Scholar
  21. 21.
    Jia S, Wu Y (2014) Wang X, and Wang N "A subwavelength focusing structure composite of nanoscale metallic slits array with patterned dielectric substrate,". IEEE Photonics J 6:1–8CrossRefGoogle Scholar
  22. 22.
    Kim S, Lim Y, Kim H, Park J, Lee B (2008) Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. Appl Phys Lett 92.1:013103Google Scholar
  23. 23.
    Chen Q (2011) Effect of the number of zones in a one-dimensional plasmonic zone plate lens: simulation and experiment. Plasmonics 6:75–82CrossRefGoogle Scholar
  24. 24.
    Søndergaard T, Bozhevolnyi SI, Novikov SM, Beermann J, Devaux E, Ebbesen TW (2010) Extraordinary optical transmission enhanced by nanofocusing. Nano Lett 10:3123–3128CrossRefGoogle Scholar
  25. 25.
    Chen Q, Cumming DRS (2010) Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film. Opt Express 18:391–392Google Scholar
  26. 26.
    Gao Y, Liu J, Zhang X, Wang Y, Song Y, Liu S, Zhang Y (2012) Analysis of focal-shift effect in planar metallic nanoslit lenses. Opt Express 20:1320–1329CrossRefGoogle Scholar
  27. 27.
    Hu B, Wang QJ, Zhang Y (2012) Systematic study of the focal shift effect in planar plasmonic slit lenses. Nanotechnology 23:444002CrossRefGoogle Scholar
  28. 28.
    Cao PF, Cheng L, Zhang XP, Lu WP, Kong WJ, Liang XW (2013) Far-field tunable nano-focusing based on metallic slits surrounded with nonlinear-variant widths and linear-variant depths of circular dielectric grating. arXiv Prepr.; arXiv1301.2454Google Scholar
  29. 29.
    Min C, Wang P, Jiao X, Deng Y, Ming H (2007) Beam manipulating by metallic nano-optic lens containing nonlinear media. Opt Express 15:9541–9546CrossRefGoogle Scholar
  30. 30.
    Silvestri F, Gerini G, Bäumer Stefan MB, Zwet EJ (2016) Robust design procedure for dielectric resonator metasurface lens array. Opt Express 24:29153–29169CrossRefGoogle Scholar
  31. 31.
    Ee H-S, Agarwal R (2016) Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett 16:2818–2823CrossRefGoogle Scholar
  32. 32.
    Khorasaninejad M, Zhu AY, Roques-Carmes C, Chen WT, Oh J, Mishra I, Devlin RC, Capasso F (2016) Polarization-insensitive metalenses at visible wavelengths. Nano Lett 16:7229–7234CrossRefGoogle Scholar
  33. 33.
    Yin X, Steinle T, Huang L, Taubner T, Wuttig M, Zentgraf T, Giessen H (2017) Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci Appl 6:e17016CrossRefGoogle Scholar
  34. 34.
    Li Z, Butun S, Aydin K (2014) Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials. ACS Photonics 1:228–234CrossRefGoogle Scholar
  35. 35.
    Giessen H, Lippitz M (2010) Directing light emission from quantum dots. Science 329:910–911CrossRefGoogle Scholar
  36. 36.
    Li K, Stockman MI, Bergman DJ (2005) Enhanced second harmonic generation in a self-similar chain of metal nanospheres. Phys Rev B 72:227402Google Scholar
  37. 37.
    Li K, Stockman MI, Bergman DJ (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91:227402CrossRefGoogle Scholar
  38. 38.
    Palik ED (1998) Handbook of optical constants of solids. Academic press, orlando, pp 286–297Google Scholar
  39. 39.
    Cheng L, Cao P, Li Y, Kong W, Zhao X, Zhang X (2012) High efficient far-field nanofocusing with tunable focus under radial polarization illumination. Plasmonics 7:175–184CrossRefGoogle Scholar
  40. 40.
    Gonçalves M. R, . Case W. B, Arie A, and Schleich W. P, "Single-slit focusing and its representations," Appl Phys B Lasers Opt 2017; 123: 1–22CrossRefGoogle Scholar
  41. 41.
    Yu Y, Zappe H (2012) Theory and implementation of focal shift of plasmonic lenses. Opt Lett 37:1592–1594CrossRefGoogle Scholar
  42. 42.
    Szapiel S (1983) Maréchal intensity formula for small-Fresnel-number systems. Opt Lett 8:327–329CrossRefGoogle Scholar
  43. 43.
    Lalanne P, Hugonin JP, Liu HT, Wang B (2009) A microscopic view of the electromagnetic properties of subwavelength metallic surfaces. Surf Sci Rep 64:453–469CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Joint International Research Laboratory of Advanced Photonics and ElectronicsBeijing Information Science and Technology UniversityBeijingChina
  2. 2.Beijing Key Laboratory for Optoelectronic Measurement TechnologyBeijing Information Science and Technology UniversityBeijingChina
  3. 3.School of ScienceMinzu University of ChinaBeijingChina

Personalised recommendations