Advertisement

Plasmonics

pp 1–13 | Cite as

Creating Orientation-Independent Built-In Hot Spots in Gold Nanoframe with Multi-Breakages

  • Jian ZhuEmail author
  • Jiang-Kuan Chen
  • Jian-Jun Li
  • Jun-Wu ZhaoEmail author
Article
  • 31 Downloads

Abstract

In this study, the plasmonic extinction spectra and local field distributions of three different gold nanoframe models with multi-breakages are simulated based on the discrete dipole approximation (DDA) method. By tuning the length of one breakage, there are two clearly separated surface plasmon resonance (SPR) peaks which show a clear blue shift as the broken length increases, and the local field enhancement factor reaches a maximum of 140.8 when the broken length is 2 nm. The changing of plasmonic field interaction and the increased restoring force may be used to explain the resonance blue shift. In these three models, the three-dimensional (3D) local electric field distributions confirm that the hot spot regions mainly concentrate on the interior broken surfaces when the incident electric field is polarized along the broken edge. Moreover, the gold nanoframe with three breakages can create the polarization orientation-independent built-in hot spots inside the broken surfaces. Therefore, the local field enhancement and hot spot regions may be controlled by adjusting the number of breakages and the orientation of polarized field. Consequently, these simulated results about the plasmonic optical properties in gold nanoframe provide a theoretical guidance for the design of polarization orientation-independent SERS substrate, which could create the built-in hot spots and improve the SERS activity.

Keywords

Gold nanoframe Multi-breakages Polarization direction Hot spots 

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China under grant no. 11774283.

References

  1. 1.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  2. 2.
    Li JF, Zhang YJ, Ding SY, Panneerselvam R, Tian ZQ (2017) Core-shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117:5002–5069CrossRefGoogle Scholar
  3. 3.
    Zong C, Xu MX, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B (2018) Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev 118:4946–4980CrossRefGoogle Scholar
  4. 4.
    Le Ru EC, Etchegoin PG, Meyer M (2006) Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J Chem Phys 125:204701CrossRefGoogle Scholar
  5. 5.
    Kim NH, Hwang W, Baek K, Rohman MR, Kim J, Kim HW, Mun J, Lee SY, Yun G, Murray J, Ha JW, Rho J, Moskovits M, Kim K (2018) Smart SERS hot spots: single molecules can be positioned in a plasmonic nanojunction using host–guest chemistry. J Am Chem Soc 140:4705–4711CrossRefGoogle Scholar
  6. 6.
    Zrimsek AB, Chiang N, Mattei M, Zaleski S, McAnally MO, Chapman CT, Henry AI, Schatz GC, Van Duyne RP (2017) Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem Rev 117:7583–7613CrossRefGoogle Scholar
  7. 7.
    Yuan YF, Panwar N, Yap SHK, Wu Q, Zeng SW, Xu JH, Tjin SC, Song J, Qu JL, Yong KT (2017) SERS-based ultrasensitive sensing platform: an insight into design and practical applications. Coord Chem Rev 337:1–33CrossRefGoogle Scholar
  8. 8.
    Sonntag MD, Klingsporn JM, Zrimsek AB, Sharma B, Ruvuna LK, Van Duyne RP (2014) Molecular plasmonics for nanoscale spectroscopy. Chem Soc Rev 43:1230–1247CrossRefGoogle Scholar
  9. 9.
    Prakash J, Harris RA, Swart HC (2016) Embedded plasmonic nanostructures: synthesis, fundamental aspects and their surface enhanced Raman scattering applications. Int Rev Phys Chem 35:353–398CrossRefGoogle Scholar
  10. 10.
    Zhao J, Long L, Weng GJ, Li JJ, Zhu J, Zhao JW (2017) Multi-branch Au/Ag bimetallic core-shell-satellite nanoparticles as a versatile SERS substrate: the effect of Au branches in a mesoporous silica interlayer. J Mater Chem C 5:12678–12687CrossRefGoogle Scholar
  11. 11.
    Rycenga M, Xia XH, Moran CH, Zhou F, Qin D, Li ZY, Xia YA (2011) Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angew Chem Int Ed 50:5473–5477CrossRefGoogle Scholar
  12. 12.
    Zhang F, Wu N, Zhu J, Zhao J, Weng GJ, Li JJ, Zhao JW (2018) Au@AuAg yolk-shell triangular nanoplates with controlled interior gap for the improved surface-enhanced Raman scattering of rhodamine 6G. Sensors Actuators B Chem 271:174–182CrossRefGoogle Scholar
  13. 13.
    Zhu J, Zhang Q, Zhang CH, Weng GJ, Zhao J, Li JJ, Zhao JW (2017) Synthesis of colloidal gold nanobones with tunable negative curvatures at end surface and their application in SERS. J Nanopart Res 19:364CrossRefGoogle Scholar
  14. 14.
    McLellan JM, Siekkinen A, Chen JY, Xia YN (2006) Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem Phys Lett 427:122–126CrossRefGoogle Scholar
  15. 15.
    Guo PZ, Sikdar D, Huang XQ, Si KJ, Xiong W, Gong S, Yap LW, Premaratne M, Cheng WL (2015) Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement. Nanoscale 7:2862–2868CrossRefGoogle Scholar
  16. 16.
    Phatangare AB, Dhole SD, Dahiwale SS, Bhoraskar VN (2018) Ultra-high sensitive substrates for surface enhanced Raman scattering, made of 3 nm gold nanoparticles embedded on SiO2 nanospheres. Appl Surf Sci 441:744–753CrossRefGoogle Scholar
  17. 17.
    Klinkova A, Therien-Aubin H, Ahmed A, Nykypanchuk D, Choueiri RM, Gagnon B, Muntyanu A, Gale O, Walker GC, Kumacheva E (2014) Structural and optical properties of self-assembled chains of plasmonic nanocubes. Nano Lett 14:6314–6321CrossRefGoogle Scholar
  18. 18.
    Gao B, Arya G, Tao AR (2012) Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat Nanotechnol 7:433–437CrossRefGoogle Scholar
  19. 19.
    Mahmoud MA, El-Sayed MA (2009) Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter-and intraparticle plasmonic fields. Nano Lett 9:3025–3031CrossRefGoogle Scholar
  20. 20.
    El-Aasser MA, Mahmoud SA (2017) Spectral response of Fabry-Pérot plasmonic optical resonators. Optoelectron Adv Mater Rapid Commun 11:398–404Google Scholar
  21. 21.
    El-Aasser MA (2014) Design optimization of nanostrip metamaterial perfect absorbers. J Nanophotonics 8:083085CrossRefGoogle Scholar
  22. 22.
    Bordley JA, Hooshmand N, El-Sayed MA (2015) The coupling between gold or silver nanocubes in their homo-dimers: a new coupling mechanism at short separation distances. Nano Lett 15:3391–3397CrossRefGoogle Scholar
  23. 23.
    Hooshmand N, Bordley JA, El-Sayed MA (2015) Plasmonic spectroscopy: the electromagnetic field strength and its distribution determine the sensitivity factor of face-to-face Ag nanocube dimers in solution and on a substrate. J Phys Chem C 119:15579–15587CrossRefGoogle Scholar
  24. 24.
    Camargo PHC, Au L, Rycenga M, Li WY, Xia YN (2010) Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes. Chem Phys Lett 484:304–308CrossRefGoogle Scholar
  25. 25.
    Hooshmand N, O’Neil D, Asiri AM, El-Sayed M (2014) Spectroscopy of homo- and heterodimers of silver and gold nanocubes as a function of separation: a DDA simulation. J Phys Chem A 118:8338–8344CrossRefGoogle Scholar
  26. 26.
    Hooshmand N, Panikkanvalappil SR, El-Sayed MA (2016) Effects of the substrate refractive index, the exciting light propagation direction, and the relative cube orientation on the plasmonic coupling behavior of two silver nanocubes at different separations. J Phys Chem C 120:20896–20904CrossRefGoogle Scholar
  27. 27.
    Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220:137–141CrossRefGoogle Scholar
  28. 28.
    Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088CrossRefGoogle Scholar
  29. 29.
    Liu SD, Zhang ZS, Wang QQ (2009) High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation. Opt Express 17:2906–2917CrossRefGoogle Scholar
  30. 30.
    Yu P, Chen S, Li J, Cheng H, Li Z, Tian J (2013) Co-enhancing and -confining the electric and magnetic fields of the broken-nanoring and the composite nanoring by azimuthally polarized excitation. Opt Express 21:20611–20619CrossRefGoogle Scholar
  31. 31.
    Sheridan AK, Clark AW, Glidle A, Cooper JM, Cumming DRS (2007) Multiple plasmon resonances from gold nanostructures. Appl Phys Lett 90:143105CrossRefGoogle Scholar
  32. 32.
    Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179CrossRefGoogle Scholar
  33. 33.
    Skrabalak SE, Au L, Li XD, Xia YN (2007) Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2:2182–2190CrossRefGoogle Scholar
  34. 34.
    Mahmoud MA, Snyder B, El-Sayed MA (2010) Surface plasmon fields and coupling in the hollow gold nanoparticles and surface-enhanced Raman spectroscopy. Theory and experiment. J Phys Chem C 114:7436–7443CrossRefGoogle Scholar
  35. 35.
    Lu XM, Au L, McLellan J, Li ZY, Marquez M, Xia YN (2007) Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett 7:1764–1769CrossRefGoogle Scholar
  36. 36.
    Chew WS, Pedireddy S, Lee YH, Tjiu WW, Liu Y, Yang Z, Ling XY (2015) Nanoporous gold nanoframes with minimalistic architectures: lower porosity generates stronger surface-enhanced Raman scattering capabilities. Chem Mater 27:7827–7834CrossRefGoogle Scholar
  37. 37.
    Chen JY, McLellan JM, Siekkinen A, Xiong YJ, Li ZY, Xia YN (2006) Facile synthesis of gold-silver nanocages with controllable pores on the surface. J Am Chem Soc 128:14776–14777CrossRefGoogle Scholar
  38. 38.
    McLellan JM, Li Z-Y, Siekkinen AR, Xia Y (2007) The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7:1013–1017CrossRefGoogle Scholar
  39. 39.
    Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–1499CrossRefGoogle Scholar
  40. 40.
    Draine BT (1988) The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J 333:848–872CrossRefGoogle Scholar
  41. 41.
    Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107:6269–6275CrossRefGoogle Scholar
  42. 42.
    Draine BT, Flatau PJ (2008) Discrete-dipole approximation for periodic targets: theory and tests. J Opt Soc Am A 25:2693–2703CrossRefGoogle Scholar
  43. 43.
    Flatau PJ, Draine BT (2012) Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. Opt Express 20:1247–1252CrossRefGoogle Scholar
  44. 44.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  45. 45.
    Tabor C, Murali R, Mahmoud M, El-Sayed MA (2009) On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J Phys Chem A 113:1946–1953CrossRefGoogle Scholar
  46. 46.
    Makaryan TH (2011) Numerical simulations on longitudinal surface plasmons of coupled gold nanorods. J Contemp Phys 46:111–115CrossRefGoogle Scholar
  47. 47.
    Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110:18243–18253CrossRefGoogle Scholar
  48. 48.
    Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Kall M, Zou SL, Schatz GC (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B 109:1079–1087CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations