Advertisement

Plasmonics

pp 1–7 | Cite as

Scaling Relations of Plasmon Resonance Peak in Au@Fe3O4 Core-Shell Nanohybrids Structure

  • Weichun ZhangEmail author
  • Haixia Ma
  • Jiyu Fan
Article
  • 31 Downloads

Abstract

In this paper, we study the absorption efficiency spectra of Au nanoparticles enveloped with Fe3O4 nanoshell by applying the discrete dipole approximation method. Three kinds of Au@Fe3O4 core-shell nanohybrids (NHs) structure, including the same core with different shell thickness, the same outer shell with different core radius, and the same size of total radius, have been discussed in detail. The simulation results show that the square of localized surface plasmon resonance (LSPR) peak wavelength of NHs is linearly proportional with the volume fraction of the shell, regardless of the outer shell material properties. Compared to the plasmon resonance peak of the Au nanoparticles, the LSPR shift of the NHs is dependent on both the total particles size and the outer Fe3O4 shell thickness. Our calculation results would provide some key guidances to design the structure variables of NHs for a broad range of plasmon applications.

Keywords

Discrete dipole approximation Nanohybrids Absorption efficiency 

Notes

Funding

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. NS2016073).

References

  1. 1.
    Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179CrossRefGoogle Scholar
  2. 2.
    Murphy CJ, San TK, Gole AM, Orendorff CJ, Gao JX, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870CrossRefGoogle Scholar
  3. 3.
    Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244CrossRefGoogle Scholar
  4. 4.
    Xu ZC, Hou YL, Sun SH (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129(28):8698–8699Google Scholar
  5. 5.
    Peng S, Lei CH, Ren Y, Cook RE, Sun YG (2011) Plasmonic/magnetic bifunctional nanoparticles. Angew Chem Int Ed 50(14):3158–3163CrossRefGoogle Scholar
  6. 6.
    Chen YH, Rice PM, Wang SX, White RL, Sun SH (2005) Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett 5(2):379–382CrossRefGoogle Scholar
  7. 7.
    Felix LL, Coaquira JAH, Martínez MAR, Goya GF, Mantilla J, Sousa MH, Valladares LD, Barnes CHW, Morais PC (2017) Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles. Sci Rep 7:41732CrossRefGoogle Scholar
  8. 8.
    Wang BY, Qu SL (2014) Absorption spectra and near-electric field enhancement effects of Au- and Ag-Fe3O4 dimers. Appl Surf Sci 292:1002–1008CrossRefGoogle Scholar
  9. 9.
    Wang Y, Shen YH, Xie AJ, Li SK, Wang XF, Cai Y (2010) A simple method to construct bifunctional Fe3O4/Au hybrid nanostructures and tune their optical properties in the near-infrared region. J Phys Chem C 114(10):4297–4301CrossRefGoogle Scholar
  10. 10.
    Kwizera EA, Chaffin E, Shen X, Chen JY, Zou Q, Wu ZM, Gai Z, Bhana S, O’Connor R, Wang LJ, Adhikari H, Mishra SR, Wang YM, Huang XH (2016) Size- and shape-controlled synthesis and properties of magnetic-plasmonic core-shell nanoparticles. J Phys Chem C 120(19):10530–10546CrossRefGoogle Scholar
  11. 11.
    Shevchenko EV, Bodnarchuk MI, Kovalenko MV, Talapin DV, Smith RK, Aloni S, Heiss W, Alivisatos AP (2008) Gold/iron oxide core/hollow-shell nanoparticles. Adv Mater 20(22):4323–4329CrossRefGoogle Scholar
  12. 12.
    Zhang YX, Ding HL, Liu YY, Pan SS, Luo YY, Li GH (2012) Facile one-step synthesis of plasmonic/magnetic core/shell nanostructures and their multifunctionality. J Mater Chem 22(21):10779–10786CrossRefGoogle Scholar
  13. 13.
    Sun LJ, He J, An SS, Zhang JW, Ren D (2013) Facile one-step synthesis of Ag@Fe3O4 core-shell nanospheres for reproducible SERS substrates. J Mol Struct 1046:74–81CrossRefGoogle Scholar
  14. 14.
    Dong YH, Yang ZY, Sheng QL, Zheng JB (2018) Solvothermal synthesis of Ag@Fe3O4 nanosphere and its application as hydrazine sensor. Colloid Surface A 538:371–377CrossRefGoogle Scholar
  15. 15.
    Guzatov DV, Vaschenko SV, Stankevich VV, Lunevich AY, Glukhov YF, Gaponenko SV (2012) Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment. J Phys Chem C 116(19):10723–10733CrossRefGoogle Scholar
  16. 16.
    Gaponenko SV (2010) Introduction to nanophotonics. Cambridge University press, CambridgeCrossRefGoogle Scholar
  17. 17.
    Rumyantseva A, Kostcheev S, Adam PM, Gaponenko SV, Vaschenko SV, Kulakovich OS, Ramanenka AA, Guzatov DV, Korbutyak D, Dzhagan V, Stroyuk A, Shvalagin V (2013) Nonresonant surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles. ACS Nano 7(4):3420–3426CrossRefGoogle Scholar
  18. 18.
    Wang BY, Qu SL (2013) Discrete dipole approximation simulations of absorption spectra and local electric field distributions of superparamagnetic magnetite nanoparticles. Laser Phys 23(4):045901CrossRefGoogle Scholar
  19. 19.
    Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett 7(9):2854–2858CrossRefGoogle Scholar
  20. 20.
    Encina ER, Coronado EA (2016) Size optimization of iron oxide@noble metal core-shell nanohybrids for photothermal applications. J Phys Chem C 120(10):5630–5639CrossRefGoogle Scholar
  21. 21.
    Chaffin EA, Bhana S, O’Connor RT, Huang XH, Wang YM (2014) Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core shell nanoparticles. J Phys Chem B 118(49):14076–14084CrossRefGoogle Scholar
  22. 22.
    Mohapatra S, Mishra YK, Avasthi DK, Kabiraj D, Ghatak J, Varma S (2008) Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett 92(10):103105CrossRefGoogle Scholar
  23. 23.
    Oldfield G, Ung T, Mulvaney P (2000) Au@SnO2 Core-Shell Nanocapacitors. Adv Mater 12(20):1519–1522CrossRefGoogle Scholar
  24. 24.
    Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11(4):1491–1499CrossRefGoogle Scholar
  25. 25.
    Roopak S, Pathak NK, Ji A, Sharma RP (2016) Numerical simulation of broadband scattering by coated and noncoated metal nanostructures using discrete dipole approximation method. Plasmonics 11(2):425–432CrossRefGoogle Scholar
  26. 26.
    Roopak S, Pathak N, Sharma R, Ji A, Pathak H, Sharma RP (2016) Numerical simulation of extinction spectra of plasmonically coupled nanospheres using discrete dipole approximation: influence of compositional asymmetry. Plasmonics 11(6):1603–1612CrossRefGoogle Scholar
  27. 27.
    Schlegel A, Alvarado SF, Wachter P (1979) Optical properties of magnetite (Fe3O4). J Phys C Solid State Phys 12(6):1157–1164CrossRefGoogle Scholar
  28. 28.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379CrossRefGoogle Scholar
  29. 29.
    Hooshmand N, O’Neil D, Asiri AM, El-Sayed M (2014) Spectroscopy of homo- and heterodimers of silver and gold nanocubes as a function of separation: a DDA simulation. J Phys Chem A 118(37):8338–8344CrossRefGoogle Scholar
  30. 30.
    Ma YW, Zhang LH, Wu ZW, You JC, Yin XC, Zhang J, Jian GS (2017) Theoretical studies of tunable localized surface plasmon resonance of gold-dielectric multilayered nanoshells. Plasmonics 12(4):1057–1070CrossRefGoogle Scholar
  31. 31.
    Velasco V, Munoz L, Mazario E, Menendez N, Herrasti P, Hernando A, Crespo P (2015) Chemically synthesized Au-Fe3O4 nanostructures with controlled optical and magnetic properties. J Phys D Appl Phys 48(3):035502–035511CrossRefGoogle Scholar
  32. 32.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248CrossRefGoogle Scholar
  33. 33.
    Huang JM, Sun YH, Huang SS, Yu K, Zhao Q, Peng F, Yu H, Wang HJ, Yang J (2011) Crystal engineering and SERS properties of Ag-Fe3O4 nanohybrids: from heterodimer to core-shell nanostructures. J Mater Chem 21(44):17930–17937CrossRefGoogle Scholar
  34. 34.
    Wei YH, Klajn R, Pinchuk AO, Grzybowski BA (2008) Synthesis, shape control, and optical properties of hybrid Au/Fe3O4 “nanoflowers”. Small 4(10):1635–1639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations