pp 1–6 | Cite as

Optimization of 1D Silver Grating Devices for Extraordinary Optical Transmission

  • Tahir IqbalEmail author
  • Muhammad Umar Farooq
  • Mohsin IjazEmail author
  • Sumera Afsheen
  • Muhammad Rizwan
  • Muhammad Bilal Tahir


This paper reports the behavior of extraordinary optical transmission (EOT) through 1D plasmonic nanostructure devices when thickness and periodicity of silver film simulated on glass substrate are fixed and only slit width is varied. Transverse magnetic (TM) polarized photon incident normally at the grating structure and zero-order transmission spectra has been extracted. Fano-resonance associate with the excitation of the surface plasmon polaritons (SPPs) has been evaluated carefully to calculate EOT. Excited plasmons along with the Febry-Perot mode have contributed toward the EOT through the periodic slits in the grating device. It has been found that its numerical value of EOT is maximum at a particular slit width, i.e., 409 nm, which is greater than one half and less than two third of periodicity, when wavelength of light is comparable with periodicity. This unique behavior is associated with the maximum incident energy coupled to the excited plasmon due to fundamental plasmonic mode being the most efficient. Such optimal devices find many applications in real world, e.g., light-emitting diodes (LEDs), biosensing, and SERs.


Enhanced optical transmission (EOT) Surface plasmon resonance (SPR) Periodicity Slit width Gating structure 



Dr. Tahir Iqbal—Co-Principal Investigator—received financial support provided by the Higher Education Commission (HEC), Pakistan, through Project no. 21-1787/SRGP/R&D/HEC/2017 dated December 12, 2017, under the Scheme Start-up Research Grant (SRGP).


  1. 1.
    Busch K, von Freymann G, Linden S, Mingaleev SF, Tkeshelashvili L, Wegener M (2007) Periodic nanostructures for photonics. Phys Rep 444(3–6):101–202CrossRefGoogle Scholar
  2. 2.
    Pang Y, Genet C, Ebbesen T (2007) Optical transmission through subwavelength slit apertures in metallic films. Opt Commun 280(1):10–15CrossRefGoogle Scholar
  3. 3.
    Romanato F, Ongarello T, Zacco G, Garoli D, Zilio P, Massari M (2011) Extraordinary optical transmission in one-dimensional gold gratings: near-and far-field analysis. Appl Opt 50(22):4529–4534CrossRefGoogle Scholar
  4. 4.
    Iqbal T, Afsheen S (2016) Extraordinary optical transmission: role of the slit width in 1D metallic grating on higher refractive index substrate. Curr Appl Phys 16(4):453–458CrossRefGoogle Scholar
  5. 5.
    Sheng P, Stepleman R, Sanda P (1982) Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations. Phys Rev B 26(6):2907–2916CrossRefGoogle Scholar
  6. 6.
    Iqbal T (2018) Efficient excitation and amplification of the surface plasmons. Curr Appl Phys 18(11):1381–1387CrossRefGoogle Scholar
  7. 7.
    Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66(7–8):163–182CrossRefGoogle Scholar
  8. 8.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669CrossRefGoogle Scholar
  9. 9.
    Iqbal T (2015) Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating. Curr Appl Phys 15(11):1445–1452CrossRefGoogle Scholar
  10. 10.
    Garcia-Vidal F, Martin-Moreno L (2002) Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys Rev B 66(15):155412CrossRefGoogle Scholar
  11. 11.
    Crouse D, Keshavareddy P (2005) Role of optical and surface plasmon modes in enhanced transmission and applications. Opt Express 13(20):7760–7771CrossRefGoogle Scholar
  12. 12.
    Javaid M, Iqbal T (2016) Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics 11(1):167–173CrossRefGoogle Scholar
  13. 13.
    Shao D, Chen S (2005) Numerical simulation of surface-plasmon-assisted nanolithography. Opt Express 13(18):6964–6973CrossRefGoogle Scholar
  14. 14.
    Luo X, Ishihara T (2004) Sub-100-nm photolithography based on plasmon resonance. Jpn J Appl Phys 43(6S):4017–4021CrossRefGoogle Scholar
  15. 15.
    Zakharian AR, Moloney JV, Mansuripur M (2007) Surface plasmon polaritons on metallic surfaces. Opt Express 15(1):183–197CrossRefGoogle Scholar
  16. 16.
    Radko IP et al (2008) Efficiency of local surface plasmon polariton excitation on ridges. Phys Rev B 78(11):115115CrossRefGoogle Scholar
  17. 17.
    Iqbal T, Afsheen S (2016) Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling. Plasmonics 11(5):1247–1256CrossRefGoogle Scholar
  18. 18.
    Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, Altug H (2010) An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 10(12):4962–4969CrossRefGoogle Scholar
  19. 19.
    Burgos SP, Yokogawa S, Atwater HA (2013) Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor. ACS Nano 7(11):10038–10047CrossRefGoogle Scholar
  20. 20.
    Pendry J, Martin-Moreno L, Garcia-Vidal F (2004) Mimicking surface plasmons with structured surfaces. Science 305(5685):847–848CrossRefGoogle Scholar
  21. 21.
    Liu H, Lalanne P (2008) Microscopic theory of the extraordinary optical transmission. Nature 452(7188):728–731CrossRefGoogle Scholar
  22. 22.
    Genet C, Ebbesen T (2009) Light in tiny holes. Nanoscience and Technology, World Scientific: 205–212.
  23. 23.
    De Abajo FG (2007) Colloquium: light scattering by particle and hole arrays. Rev Mod Phys 79(4):1267–1290CrossRefGoogle Scholar
  24. 24.
    Kaplan AF, Xu T, Jay Guo L (2011) High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl Phys Lett 99(14):143111CrossRefGoogle Scholar
  25. 25.
    Yokogawa S, Burgos SP, Atwater HA (2012) Plasmonic color filters for CMOS image sensor applications. Nano Lett 12(8):4349–4354CrossRefGoogle Scholar
  26. 26.
    Joannopoulos JD et al (2011) Photonic crystals: molding the flow of light. Princeton University Press, PrincetonGoogle Scholar
  27. 27.
    Johnson SG et al (2002) Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. Phys Rev E 66(6):066608CrossRefGoogle Scholar
  28. 28.
    Gramotnev DK, Bozhevolnyi SI (2014) Nanofocusing of electromagnetic radiation. Nat Photonics 8(1):13–22CrossRefGoogle Scholar
  29. 29.
    Verhagen E et al (2009) Nanowire plasmon excitation by adiabatic mode transformation. Phys Rev Lett 102(20):203904CrossRefGoogle Scholar
  30. 30.
    Iqbal T et al (2018) Optimization of 1D plasmonic grating of nanostructured devices for the investigation of plasmonic bandgap. Plasmonics:1–9Google Scholar
  31. 31.
    Iqbal T et al (2018) Investigation of Plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics:1–7Google Scholar
  32. 32.
    O’Connor D (2010) Modelling of nano-optic light delivery mechanisms for use in high density data storage. Queen’s University Belfast, BelfastGoogle Scholar
  33. 33.
    Afsheen S et al (2018) Efficient biosensing through 1D silver nanostructured devices using plasmonic effect. Nanotechnology 29(38):385501Google Scholar
  34. 34.
    Palik ED (1984) Handbook of optical constants of solids. Academic Press, OrlandoGoogle Scholar
  35. 35.
    Iqbal T et al (2018) An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics:1–8Google Scholar
  36. 36.
    Vempati S, Iqbal T, Afsheen S (2015) Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J Appl Phys 118(4):043103CrossRefGoogle Scholar
  37. 37.
    Iqbal T, Afsheen S (2017) One dimensional plasmonic grating: high sensitive biosensor. Plasmonics 12(1):19–25CrossRefGoogle Scholar
  38. 38.
    Iqbal T, Afsheen S (2016) Plasmonic band gap: role of the slit width in 1D metallic grating on higher refractive index substrate. Plasmonics 11(3):885–893CrossRefGoogle Scholar
  39. 39.
    Iqbal T (2017) Coupling efficiency of surface plasmon polaritons: far-and near-field analyses. Plasmonics 12(1):215–221CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of Gujrat, Hafiz Hayat CampusGujratPakistan
  2. 2.Department of PhysicsAllama Iqbal Open University (AIOU)IslamabadPakistan
  3. 3.Department of Zoology, Faculty of ScienceUniversity of Gujrat, Hafiz Hayat CampusGujratPakistan

Personalised recommendations