Advertisement

Plasmonics

pp 1–8 | Cite as

Controllable Dual Hybrid Tamm Plasmon Modes in Binary Gold Nanodisk Arrays and Distributed Bragg Reflector Structure

  • Li Wang
  • Bingyi Liu
  • Jie Song
  • Weiqi Li
  • Yongyuan JiangEmail author
Article
  • 21 Downloads

Abstract

Optical Tamm plasmon (TP) can be excited at the boundary of photonic crystal and metal film. In this work, we propose a composite structure consisting of binary Au nanodisk arrays on top of a distributed Bragg reflector (DBR) of TiO2/SiO2 1D photonic crystal; the structure supports the confined dual hybrid TP modes that benefited from the excitation of a localized lattice collective resonance on the vicinity of the nanoparticles array. The hybrid TP modes possess enhanced confinement, controllable hybrid TP frequency, and broadened spectral width compared with that of TP mode within the gold film/DBR structure. Moreover, the hybrid TP mode that due to the in-phased localized lattice resonance is dominated when the nanodisk radius increases, while the hybrid TP mode resulted from weak coupling of in-phased and anti-phased localized lattice resonance is weakened, especially when the radii of binary arrays approach identical. Thus, the tunable dual confined TP states can be realized through adjusting the arrays radii rather than changing the properties of DBR. Importantly, the enhancement of confined hybrid TP modes with controllable resonant frequency has a potential application in perfect absorption.

Keywords

Optical Tamm plasmon DBR Binary Au nanodisk array Localized lattice collective resonance 

Notes

Funding information

This work was supported by National Natural Science Foundation of China (NSFC) (50836002, 51176041).

References

  1. 1.
    Yeh P, Yariv A, Cho AY (1978) Optical surface waves in periodic layered media. Appl Phys Lett 32:104–105CrossRefGoogle Scholar
  2. 2.
    Kavokin AV, Shelykh IA, Malpuech G (2005) Lossless interface modes at the boundary between two periodic dielectric structures. Phys Rev B 72:233102CrossRefGoogle Scholar
  3. 3.
    Shelykh IA, Kaliteevskii M, Kavokin AV, Brand S, Abram RA, Chamberlain JM, Malpuech G (2007) Interface photonic states at the boundary between a metal and a dielectric Bragg mirror. Phys Status Solidi A 204:522–525CrossRefGoogle Scholar
  4. 4.
    Kaliteevski M, Iorsh I, Brand S, Abram RA, Chamberlain JM, Kavokin AV, Shelykh IA (2007) Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B 76:165415CrossRefGoogle Scholar
  5. 5.
    Fang MS, Shi FH, Chen YH (2016) Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide. Plasmonics 11:197–203CrossRefGoogle Scholar
  6. 6.
    Zhang WL, Yu SF (2010) Bistable switching using an optical Tamm cavity with a Kerr medium. Opt Commun 283:2622–2626CrossRefGoogle Scholar
  7. 7.
    Afinogenov BI, Bessonov VO, Fedyanin AA (2014) Second-harmonic generation enhancement in the presence of Tamm plasmon-polaritons. Opt Lett 39:6895–6898CrossRefGoogle Scholar
  8. 8.
    Du GQ, Jiang HT, Wang ZS, Chen H (2009) Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals. Opt Lett 34:78–580CrossRefGoogle Scholar
  9. 9.
    Symonds C, Lheureux G, Hugonin JP, Greffet JJ, Laverdant J, Brucoli G, Lemaitre A, Senellart P, Bellessa J (2013) Confined Tamm plasmon lasers. Nano Lett 13:3179–3184CrossRefGoogle Scholar
  10. 10.
    Lheureux G, Azzini S, Symonds C, Senellart P, Lemaître A, Sauvan C, Hugonin JP, Greffet JJ, Bellessa J (2015) Polarization-controlled confined Tamm plasmon lasers. ACS Photon 2:842–848CrossRefGoogle Scholar
  11. 11.
    Zhang WL, Wang F, Rao YJ, Jiang Y (2014) Novel sensing concept based on optical Tamm plasmon. Opt Express 22:14524–14529CrossRefGoogle Scholar
  12. 12.
    Huang SG, Chen KP, Jeng SC (2017) Phase sensitive sensor on Tamm plasmon devices. Opt Mater Express 7:1267CrossRefGoogle Scholar
  13. 13.
    Jiménez-Solano A, Galisteo-López JF, Míguez H (2017) Flexible and adaptable light-emitting coatings for arbitrary metal surfaces based on optical Tamm mode coupling. Adv Opt Mater 6:1700560CrossRefGoogle Scholar
  14. 14.
    Chen YK, Zhang DG, Qiu D, Zhu LF, Yu SS, Yao PJ, Wang P, Ming H, Badugu R, Lakowicz JR (2014) Back focal plane imaging of Tamm plasmons and their coupled emission. Laser Photonics Rev 8:933–940CrossRefGoogle Scholar
  15. 15.
    Wang X, Jiang X, You Q, Guo J, Dai XY, Xiang YJ (2017) Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene. Photon Res 5:536–542CrossRefGoogle Scholar
  16. 16.
    Salewski M, Poltavtsev SV, Kapitonov YV, Vondran J, Yakovlev DR, Schneider C, Kamp M, Hofling S, Oulton R, Akimov IA, Kavokin AV, Bayer M (2017) Photon echoes from (In,Ga) as quantum dots embedded in a Tamm-plasmon microcavity. Phys Rev B 95:035312CrossRefGoogle Scholar
  17. 17.
    Wurdack M, Lundt N, Klaas M, Baumann V, Kavokin AV, Höfling S, Schneider C (2017) Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer. Nat Commun 8:259CrossRefGoogle Scholar
  18. 18.
    Gessler J, Baumann V, Emmerling M, Amthor M, Winkler K, Hofling S, Schneider C, Kamp M (2014) Electro optical tuning of Tamm-plasmon exciton-polaritons. Appl Phys Lett 105:181107CrossRefGoogle Scholar
  19. 19.
    Symonds C, Lemaître A, Homeyer E, Plenet JC, Bellessa J (2009) Emission of Tamm plasmon/exciton polaritons. Appl Phys Lett 95:151114CrossRefGoogle Scholar
  20. 20.
    Afinogenov BI, Bessonov VO, Nikulin AA, Fedyanin AA (2013) Observation of hybrid state of Tamm and surface plasmon-polaritons in one dimensional photonic crystals. Appl Phys Lett 103:061112CrossRefGoogle Scholar
  21. 21.
    Lopez-Garcia M, Ho Y-LD, Taverne MPC, Chen L-F, Murshidy MM, Edwards AP, Serry M, Adawi AM, Rarity JG, Oulton R (2014) Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation. Appl Phys Lett 104:231116CrossRefGoogle Scholar
  22. 22.
    Liu H, Sun XD, Yao FF, Pei YB, Yuan HM, Zhao H (2012) Controllable coupling of localized and propagating surface plasmons to Tamm plasmons. Plasmonics 7:749–754CrossRefGoogle Scholar
  23. 23.
    Liu H, Gao JS, Liu Z, Wang WY, Yang HG, Chen H (2015) Large electromagnetic field enhancement achieved through coupling localized surface plasmons to hybrid Tamm plasmons. J Opt Soc Am B 32:2061CrossRefGoogle Scholar
  24. 24.
    Gong YK, Liu XL, Li K, Huang JG, Martinez JJ, Rees-Whippey D, Carver S, Wang L, Zhang WF, Duan T, Copner N (2013) Coherent emission of light using stacked gratings. Phys Rev B 87:205121CrossRefGoogle Scholar
  25. 25.
    Gazzano O, De Vasconcellos SM, Gauthron K, Symonds C, Bloch J, Voisin P, Bellessa J, Lemaıtre A, Senellart P (2011) Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. Phys Rev Lett 107:247402CrossRefGoogle Scholar
  26. 26.
    Zhang XL, Feng J, Han XC, Liu YF, Chen QD, Song JF, Sun HB (2015) Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices. Optica 2:579CrossRefGoogle Scholar
  27. 27.
    Zhao WY, Ju DQ, Jiang YY (2015) Sharp Fano resonance within Bi-periodic silver particle array and its application as plasmonic sensor with ultra-high figure of merit. Plasmonics 10:469–474CrossRefGoogle Scholar
  28. 28.
    Zhao WY, Jiang YY (2015) Experimental demonstration of sharp Fano resonance within binary gold nanodisk array through lattice coupling effects. Opt Lett 40:93–96CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Li Wang
    • 1
  • Bingyi Liu
    • 1
  • Jie Song
    • 1
  • Weiqi Li
    • 1
  • Yongyuan Jiang
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Institute of Modern Optics, Department of PhysicsHarbin Institute of TechnologyHarbinChina
  2. 2.Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang ProvinceHarbinChina
  3. 3.Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information TechnologyHarbinChina
  4. 4.Collaborative Innovation Center of Extreme Optics, Shanxi UniversityTaiyuanChina

Personalised recommendations