pp 1–9 | Cite as

Rotating Ag-Fe3O4-Au Nanograin by Optical Torque with a Monochromatic Light Beam

  • Xiaoqin Mao
  • Yan Li
  • Weiyan Jiao
  • Xinshun Wang
  • Benyang WangEmail author


Optical torques of asymmetrical Ag–Fe3O4–Au nanograins were investigated by the method of discrete dipole approximation (DDA). The results show that surface plasmon resonance (SPR) causes the optical torques which can keep the nanograins rotating clockwise or counterclockwise. When the power density of optical radiation is I = 109 W/m2, the angular velocities of the hybrid sphere and cube heterotrimers can reach to about 104 rad/s in the ranges of 360–374 nm and 403–426 nm, which is ten times larger than that of Brownian rotation. The peak widths at half height of angular velocity curves for two kinds of grains are in the ranges of 31–47 nm and 54–70 nm, respectively. When light radiation force offers a regular driving force, such grains can serve as potential nanoscale optical wrench or microscopic mixers. In addition, the influences of Brownian rotation and photophoresis were discussed.


Discrete dipole approximation Radiation force Surface plasmon resonance Nanostructure 



We acknowledge Prof. B. T. Draine (Princeton University) and Prof. P. J. Flatau (University of California) for making the freely available DDSCAT program.

Funding Information

This work is supported by National Natural Science Foundation of China (11304064) and Innovation Foundation of Harbin Institute of Technology (IDGA18102146).


  1. 1.
    Coronado EA, Encina ER, Stefani FD (2011) Optical properties of metallic nanoparticles: manipulating light heat and forces at the nanoscale. Nanoscale 3:4042–4059CrossRefGoogle Scholar
  2. 2.
    Arias-González JR, Nieto-Vesperinas M (2003) Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. J Opt Soc Am A 20:1201–1209CrossRefGoogle Scholar
  3. 3.
    Marqués MI, Saénz JJ (2012) Scattering forces and electromagnetic momentum density in crossed circularly polarized standing waves. Opt Lett 37:2787–2789CrossRefGoogle Scholar
  4. 4.
    Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159CrossRefGoogle Scholar
  5. 5.
    Yan Z, Scherer NF (2013) Optical vortex induced rotation of silver nanowires. J Phys Chem Lett 4:2937–2942CrossRefGoogle Scholar
  6. 6.
    Mitri FG (2016) Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam. J Quant Spectrosc Radiat Transf 182:172–179CrossRefGoogle Scholar
  7. 7.
    Lehmuskero A, Ogier R, Gschneidtner T, Johansson P, Käll M (2013) Ultrafast spinning of gold nanoparticles in water using circularly polarized light. Nano Lett 13:3129–3134CrossRefGoogle Scholar
  8. 8.
    Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870CrossRefGoogle Scholar
  9. 9.
    Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T (2011) Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Reviews 2:1–62CrossRefGoogle Scholar
  10. 10.
    Jiang J, Gu H, Shao H, Devlin E, Papaefthymiou GC, Ying JY (2008) Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv Mater 20:4403–4407CrossRefGoogle Scholar
  11. 11.
    Wei Y, Klajn R, Pinchuk AO, Grzybowski BA (2008) Synthesis, shape control, and optical properties of hybrid Au/Fe3O4 “nanoflowers”. Small 4:1635–1639CrossRefGoogle Scholar
  12. 12.
    Xing G, Jiang J, Ying JY, Ji W (2010) Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold. Opt Express 18:6183–6190CrossRefGoogle Scholar
  13. 13.
    Leung KC, Xuan S, Zhu X, Wang D, Chak CP, Lee SF, Ho WK, Chung BC (2012) Gold and iron oxide hybrid nanocomposite materials. Chem Soc Rev 41:1911–1928CrossRefGoogle Scholar
  14. 14.
    Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699CrossRefGoogle Scholar
  15. 15.
    Buck MR, Bondi JF, Schaak RE (2012) A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat Chem 4:37–44CrossRefGoogle Scholar
  16. 16.
    Draine BT, Weingartner JC (1997) Radiative torques on interstellar grains: II. Grain alignment. Astrophys J 480:633–646CrossRefGoogle Scholar
  17. 17.
    Weingartner JC, Draine BT (2002) Radiative torques on insterstellar grains: III. Dyamics with thermal relaxation. Astrophys J 589:289–318CrossRefGoogle Scholar
  18. 18.
    Hansen PM, Bhatia VK, Harrit N, Oddershede L (2005) Expanding the optical trapping range of gold nanoparticles. Nano Lett 5:1937–1942CrossRefGoogle Scholar
  19. 19.
    Lin J, Thomas EL (2011) Optical forces and optical torques on various materials arising from optical lattices in the Lorentz-Mie regime. Phys Rev B 84:125128CrossRefGoogle Scholar
  20. 20.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  21. 21.
    Schlegel A, Alvarado SF, Wachter P (1979) Optical properties of magnetite(Fe3O4). J Phys C 12:1157–1164CrossRefGoogle Scholar
  22. 22.
    Ungureanu C, Rayavarapu RG, Manohar S, Leeuwen TGV (2009) Discrete dipole approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment. J Appl Phys 105:102032CrossRefGoogle Scholar
  23. 23.
    Dhoni MS, Wei J (2011) Extension of discrete-dipole approximation model to compute nonlinear absorption in gold nanostructures. J Phys Chem C 115:20359–20366CrossRefGoogle Scholar
  24. 24.
    Wang B, Qu S (2014) Absorption spectra and near-electric field enhancement effects of Au- and Ag-Fe3O4 dimers. Appl Surf Sci 292:1002–1008CrossRefGoogle Scholar
  25. 25.
    Kuwata H, Tamaru H, Esumi K, Miyano K (2003) Resonant light scattering from metal nanoparticles: practical analysis beyond rayleigh approximation. Appl Phys Lett 83:4625–4627CrossRefGoogle Scholar
  26. 26.
    Ross BM, Lee LP (2009) Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles. Opt Lett 34:896–898CrossRefGoogle Scholar
  27. 27.
    Draine BT (2003) Scattering by interstellar dust grains: I. Optical and ultraviolet. Astrophys J 598:1026–1037CrossRefGoogle Scholar
  28. 28.
    Sosa IO, Noguez AC, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107:6269–6275CrossRefGoogle Scholar
  29. 29.
    Marston PL, Crichton JH (1984) Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave. Phys Rev A 30:2508–2516CrossRefGoogle Scholar
  30. 30.
    Kerker M, Cooke DD (1982) Photophoretic force on aerosol particles in the free-molecule regime. J Opt Soc Am 72:1267–1272CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoqin Mao
    • 1
  • Yan Li
    • 1
  • Weiyan Jiao
    • 1
  • Xinshun Wang
    • 1
  • Benyang Wang
    • 1
    Email author
  1. 1.Department of Optoelectronics ScienceHarbin Institute of Technology at WeihaiWeihaiChina

Personalised recommendations