, Volume 13, Issue 5, pp 1767–1773 | Cite as

A Design for Band Enhanced Dielectric Absorber Based on Fractal-Like Structure

  • Yongdiao Wen
  • Shaobin Liu
  • Haifeng ZhangEmail author
  • Lingling Wang


A dielectric metamaterial absorber has been proposed, which consists of fractal-like structure and conductive sheet. The fractal-like structure is made by the high permittivity dielectric and also is covered by the conductive sheet. Absorptivity of such a dielectric metamaterial absorber is 99.1%, which can be found at 10.196 GHz; meanwhile, the absorber is polarization insensitive. To enhance the bandwidth of absorber, a novel absorber also is proposed, whose bandwidth is 0.566 GHz, which ranges from 9.752 to 10.318 GHz, and relative bandwidth is 5.64%. The maximum absorptivity can reach to 99.8%, and the proposed absorber also is polarization insensitive. In the meantime, the absorber shows excellent performance which is incident angle insensitive; when the incident angle is increased to 70°, the absorptivity is larger than 75%.


Dielectric metamaterial absorber Bandwidth enhanced Polarization insensitive Angle insensitive 


Funding Information

Funding of Jiangsu Innovation Program for Graduate Education (KYLX16_0368); National Natural Science Foundation of China (Grant No.61671238); Chinese Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1501016A); Project Funded by China Postdoctoral Science Foundation (Grant No. 2015M5817100); and the special grade of the financial support from the China Postdoctoral Science Foundation (Grant No. 2016T100455).


  1. 1.
    Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402CrossRefGoogle Scholar
  2. 2.
    Vinayasree S, Soloman MA, Sunny V, Mohanan P, Kurian P, Joy PA, Anantharaman MR (2014) Flexible microwave absorbers based on barium hexaferrite, carbon black, and nitrile rubber for 2–12 GHz applications. J Appl Phys 116:0241002CrossRefGoogle Scholar
  3. 3.
    Lim J, Ryu Y, Kim S (2015) Dual-band microwave absorption properties of metamaterial absorber composed of split ring resonator on carbonyl iron powder composites. Electron Mater Lett 11(3):447–451. CrossRefGoogle Scholar
  4. 4.
    Lin B, Zhao S, Da X, Fang Y, Ma J (2015) Triple-band low frequency ultra-compact metamaterial absorber. J Appl Phys 117(18):184503. CrossRefGoogle Scholar
  5. 5.
    Sui S, Ma H, Wang J, Pang Y, Zhang J (2016) Two-dimensional QR-coded metamaterial absorber. Appl Phys A Mater Sci Process 122(1):28. CrossRefGoogle Scholar
  6. 6.
    Bhattacharyya S, Ghosh S, Chaurasiya D, and Srivastava KV (2015) Wide-angle broadband microwave metamaterial absorber with octave bandwidth, IET Microw. Antenna P. 10(11), 1160–1166CrossRefGoogle Scholar
  7. 7.
    Zhou K, He Y, Jiang JJ, Kong P, Zhang L, Miao L, Wan GC (2014) Design and analysis of a dynamically tunable ultra-broadband flexible microwave absorber. J Electromagnet Wave 28(16):11066–11073CrossRefGoogle Scholar
  8. 8.
    Chen K, Jia N, Sima BY, Zhu B, Zhao JM, Feng YJ, Jiang T (2015) Microwave absorber based on permeability-near-zero metamaterial made of Swiss roll structures. J Phys D Appl Phys 48(45):455304. CrossRefGoogle Scholar
  9. 9.
    Luo C, Li D, Luo Q, Yue J, Gao P, Yao J, Ling F (2015) Design of a tunable multiband terahertz waves absorber. J Alloys Compd 652:18–24. CrossRefGoogle Scholar
  10. 10.
    Huang T, Tseng C, Yeh T, Yeh T, Luo C, Akalin T, Yen T (2016) Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process. Sci Rep 5(1):18605. CrossRefGoogle Scholar
  11. 11.
    Cole MA, Powell DA, Shadrivov IV (2016) Strong terahertz absorption in all-dielectric Huygens’ metasurfaces. Nanotechnology 27(42):424003. CrossRefPubMedGoogle Scholar
  12. 12.
    Hu F, Zou T, Quan B, Xu X, Bo S (2014) Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Opt Commun 332:321–326. CrossRefGoogle Scholar
  13. 13.
    Peng Y, Zang X, Zhu Y, Shi C, Chen L, Cai B, Zhuang S (2015) Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure. Opt Express 23(3):2032–2039. CrossRefPubMedGoogle Scholar
  14. 14.
    Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Jun Cui T (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett 101(15):154102. CrossRefGoogle Scholar
  15. 15.
    Adomanis BM, Watts CM, Koirala M, Liu X, Tyler T (2015) Bi-layer metamaterials as fully functional near-perfect infrared absorbers. Appl Phys Lett 107(2):021107. CrossRefGoogle Scholar
  16. 16.
    Bai Y, Zhao L, Ju D, Jiang Y, Liu L (2015) Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial. Opt Express 23(7):8670–8680. CrossRefPubMedGoogle Scholar
  17. 17.
    Liao Y, Zhao Y, Lu H (2016) A multiband absorber with dielectric–dielectric–metal structure in the infrared regime. Mod Phys Lett B 30:1650352CrossRefGoogle Scholar
  18. 18.
    Zhang N, Zhou P, Wang S, Weng X, Xie J (2015) Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers. Opt Commun 338:388–3102. CrossRefGoogle Scholar
  19. 19.
    Baqir MA, Ghasemi M, Choudhury PK, Majlis BY (2015) Design and analysis of nanostructured subwavelength metamaterial absorber operating in the UV and visible spectral range. J Electromagnet Wave 210(18):2408–24110CrossRefGoogle Scholar
  20. 20.
    Zhou W, Li K, Song C, Hao P, Chi M, Yu M, Wu Y (2015) Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region. Opt Express 23(11):A413–A418. CrossRefPubMedGoogle Scholar
  21. 21.
    Jia XL, Meng QX, Yuan CX, Zhou ZX, Wang XO (2016) Visible light broadband perfect absorbers. Phys Plasmas 23(3):032103. CrossRefGoogle Scholar
  22. 22.
    Lee K, Ji C, Guo LJ (2016) Wide-angle, polarization-independent ultrathin broadband visible absorbers. Appl Phys Lett 108(3):031107. CrossRefGoogle Scholar
  23. 23.
    Zhao Q, Zhou J, Zhang F, Lippens D (2010) Mie resonance-based dielectric metamaterials. Mater Today 12(12):60–610CrossRefGoogle Scholar
  24. 24.
    Zhang FL, Feng SQ, Qiu KP, Liu ZJ, Fan YC, Zhang WH, Zhao Q, Zhou J (2015) Mechanically stretchable and tunable metamaterial absorber. Appl Phys Lett 106:01011007Google Scholar
  25. 25.
    Liu XM, Zhao Q, Lan CW, Zhou J (2013) Isotropic Mie resonance-based metamaterial perfect absorber. Appl Phys Lett 103:0311010Google Scholar
  26. 26.
    Liu X, Bi K, Li B, Zhao Q, Zhou J (2016) Metamaterial perfect absorber based on artificial dielectric “atoms”. Opt Express 24(18):20454–20460. CrossRefPubMedGoogle Scholar
  27. 27.
    Li L, Wang J, Du H, Wang J, Qu S (2015) A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators. AIP Adv 5(1):017147. CrossRefGoogle Scholar
  28. 28.
    Fan YC, Zhang FL, Zhao Q, Wei ZY, Li HQ (2014) Tunable terahertz coherent perfect absorption in a monolayer grapheme. Opt Lett 310:62610Google Scholar
  29. 29.
    Fan YC, Liu Z, Zhang FL, Zhao Q, Wei ZY, Fu QH, Li2 JJ, Gu CZ, Li HQ (2015) Tunable mid-infrared coherent perfect absorption in a grapheme meta-surface. Sci Rep 5:131056Google Scholar
  30. 30.
    Fan YC, Shen NH, Koschny T, Soukoulis CM (2015) Tunable terahertz meta-surface with graphene cut-wires. ACS Photonics 2(1):151–156. CrossRefGoogle Scholar
  31. 31.
    Wang LL, Liu SB, Zhang HF, Kong XK, Liu LL (2017) High-impedance surface-based flexible broadband absorber. J Electromagn Waves Appl 31(13):1216–1231. CrossRefGoogle Scholar
  32. 32.
    Mie G Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der physik, 330(3), 377–445(11008)CrossRefGoogle Scholar
  33. 33.
    Bohren CF, and Huffman DR, Absorption and scattering of light by small particles, Wiley-Interscience, New York (11083)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.School of Electronics and Optics EngineeringNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations