Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1749–1758 | Cite as

Self-assembly of Large-scale Two-dimensional Plasmonic Superlattices Based on Single-Crystal Au Nanospheres and the FDTD Simulation of Its Optical Properties

  • Xiang Lin
  • Shuang Lin
  • Yuanlan Liu
  • Haiyan Zhao
  • Li Wang
  • Wuliji Hasi
Article
  • 374 Downloads

Abstract

Large-scale ordered two-dimensional (2D) superlattices at oil/water interface were fabricated using single-crystal Au nanospheres (NSs) with different diameters as building blocks. A “drain-to-deposit” strategy was used to successfully transfer the ordered superlattices onto silicon wafer. Due to the ultra-smooth and highly spherical morphology of the monodisperse Au NSs, the UV-Vis extinction spectra of individual Au nanosphere (NS) obtained from theoretical calculations by finite-difference time-domain (FDTD) method could match well with the experimental test results. Moreover, the extinction spectra of the 2D superlattice based on the different diameters of Au NSs were also measured and calculated. Additionally, with R6G as probe molecules, the surface-enhanced Raman spectroscopy (SERS) performances of the prepared superlattices were evaluated. Through investigating the electromagnetic (EM) field distribution simulation results of 2D superlattices of Au NSs with different diameters, the two results reveal rather consistently. The large-scale 2D plasmonic superlattices possess precise and tunable localized surface plasmon resonance (LSPR) property, which enables them to have great application prospect in solar cells, SERS detection, and other fields.

Keywords

Single-crystal Au NSs 2D superlattices FDTD simulation SERS 

Notes

Authors’ Contributions

XL and SL contributed equally to this work.

Funding Information

The work was supported by the National Natural Science Foundation of China (Grant No. 21501021) and the International S&T Cooperation Program of China (Grant no. 2011DFA31770).

References

  1. 1.
    Shevchenko EV, Talapin DV, Kotov NA, Brien SO, Murray CB (2006) Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. Nature 439(7072):55–59.  https://doi.org/10.1038/nature04414. CrossRefPubMedGoogle Scholar
  2. 2.
    Bigioni TP, Lin XM, Nguyen TT, Corwin EI, Witten TA, Jaeger HM (2006) Kinetically driven self-assembly of highly ordered nanoparticle monolayers. Nat Mater 5(4):265–270.  https://doi.org/10.1038/nmat1611 CrossRefPubMedGoogle Scholar
  3. 3.
    Liu Y, Zhou J, Pun EY, Jiang T, Petti L, Mormile P (2016) Self-assembled structures of polyhedral gold nanocrystals: shape-directive arrangement and structure-dependent plasmonic enhanced characteristics. RSC Adv 6(62):57320–57326.  https://doi.org/10.1039/C6RA12868H CrossRefGoogle Scholar
  4. 4.
    Hasi WLJ, Lin S, Lin X, Lou XT, Yang F, Lin DY, Lu ZW (2014) Rapid fabrication of self-assembled interfacial film decorated filter paper as an excellent surface-enhanced Raman scattering substrate. Anal Methods 6(24):9547–9553.  https://doi.org/10.1039/C4AY01775G CrossRefGoogle Scholar
  5. 5.
    Lu G, Li H, Zhang H (2011) Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering. Chem Commun 47(30):8560–8562.  https://doi.org/10.1039/C1CC12027A CrossRefGoogle Scholar
  6. 6.
    Ngo YH, Li D, Simon GP, Garnier G (2013) Effect of cationic polyacrylamides on the aggregation and SERS performance of gold NSs-treated paper. J Colloid Interf Sci 392:237–246.  https://doi.org/10.1016/j.jcis.2012.09.080 CrossRefGoogle Scholar
  7. 7.
    Peng B, Li G, Li D, Dodson S, Zhang Q, Zhang J, Lee YH, Demir HV, Ling XY, Xiong Q (2013) Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano 7(7):5993–6000.  https://doi.org/10.1021/nn401685p CrossRefPubMedGoogle Scholar
  8. 8.
    Lin X, Hasi WLJ, Han SQGW, Lou XT, Lin DY, Lu ZW (2015) Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection. Phy Chem Chem Phy 17(46):31324–31331.  https://doi.org/10.1039/C5CP04828A CrossRefGoogle Scholar
  9. 9.
    Kumari G, Kandula J, Narayana C (2015) How far can we probe by SERS. J Phys Chem C 119(34):20057–20064.  https://doi.org/10.1021/acs.jpcc.5b07556 CrossRefGoogle Scholar
  10. 10.
    Ziegler C, Eychmüller A (2011) Seeded growth synthesis of uniform gold NSs with diameters of 15-300 nm. J Phys Chem C 115(11):4502–4506.  https://doi.org/10.1021/jp1106982 CrossRefGoogle Scholar
  11. 11.
    Luo Y, Wen G, Ma L, Liang A, Jiang ZL (2016) A sensitive SERS quantitative analysis method for amino acids using Ruhemann’s purple as molecular probe in triangle nanosilver sol substrate. Plasmonics 12(2):299–308.  https://doi.org/10.1007/s11468-016-0264-8 CrossRefGoogle Scholar
  12. 12.
    Kim DK, Hwang YJ, Yoon C, Yoon H, Chang KS, Lee G, Lee S, Yi G (2015) Experimental approach to the fundamental limit of the extinction coefficients of ultra-smooth and highly spherical gold NSs. Phys Chem Chem Phys 17(32):20786–20794.  https://doi.org/10.1039/C5CP02968F. CrossRefPubMedGoogle Scholar
  13. 13.
    Wang M, Zhang Z, He J (2015) A SERS study on the assembly behavior of gold NSs at the oil/water interface. Langmuir 31(47):12911–12919.  https://doi.org/10.1021/acs.langmuir.5b03131 CrossRefPubMedGoogle Scholar
  14. 14.
    Guo QH, Xu MM, Yuan YX, Gu RN, Yao JL (2016) Self-assembled large-scale monolayer of Au NSs at the air/water interface used as a SERS substrate. Langmuir 32(18):4530–4537.  https://doi.org/10.1021/acs.langmuir.5b04393 CrossRefPubMedGoogle Scholar
  15. 15.
    Si SR, Liang WK, Sun YH, Huang J, Ma WL, Liang ZQ, Bao QL, Jiang L (2016) Facile fabrication of high density sub-1-nm gaps from Au nanoparticle monolayers as reproducible SERS substrates. Adv Funct Mater 26(44):8137–8145.  https://doi.org/10.1002/adfm.201602337 CrossRefGoogle Scholar
  16. 16.
    Lee YH, Shi WX, Lee HK, Jiang RB, Phang IY, Cui Y, Isa L, Yang YJ, Wang JF, Li SZ, Ling XY (2015) Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices. Nat Commun 6:6990.  https://doi.org/10.1038/ncomms7990 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yang Y, Lee YH, Phang IY, Jiang R, Sim HYF, Wang JF, Ling XY (2016) A chemical approach to break the planar configuration of Ag nanocubes into tunable two-dimensional metasurfaces. Nano Lett 16(6):3872–3878.  https://doi.org/10.1021/acs.nanolett.6b01388 CrossRefPubMedGoogle Scholar
  18. 18.
    Liu D, Li CC, Zhou F, Zhang T, Liu GQ, Cai WP, Li Y (2017) Capillary gradient-induced self-assembly of periodic au spherical nanoparticle arrays on an ultralarge scale via a bisolvent system at air/water Interface. Adv Mater Interfaces 4(10):1600976.  https://doi.org/10.1002/admi.201600976 CrossRefGoogle Scholar
  19. 19.
    Lee YJ, Schade NB, Sun L, Fan JA, Bae DR, Mariscal MM, Lee G, Capasso F, Sacanna S, Manoharan VN, Yi GR (2013) Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics. ACS Nano 7(12):11064–11070.  https://doi.org/10.1021/nn404765w CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang P, Li YJ, Wang DY, Xia HB (2016) High–yield production of uniform gold NSs with sizes from 31 to 577 nm via one-pot seeded growth and size-dependent SERS property. Part Part Syst Charact 33(12):924–932.  https://doi.org/10.1002/ppsc.201600188. CrossRefGoogle Scholar
  21. 21.
    Ruan QF, Shao L, Shu YW, Wang JF, Wu HK (2014) Growth of monodisperse gold NSs with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv Opt Mater 2(1):65–73.  https://doi.org/10.1002/adom.201300359. CrossRefGoogle Scholar
  22. 22.
    Gao C, Vuong J, Zhang Q, Liu YD, Yin YD (2012) One-step seeded growth of Au NSs with widely tunable sizes. Nano 4(9):2875–2878.  https://doi.org/10.1039/C2NR30300K. CrossRefGoogle Scholar
  23. 23.
    Lee YJ, Schade NB, Sun L, Fan JA, Bae DR, Mariscal MM, Lee G, Capasso F, Sacanna S, Manoharan VN, Yi GR (2013) Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics. ACS Nano 7(12):11064–11070.  https://doi.org/10.1021/nn404765w CrossRefPubMedGoogle Scholar
  24. 24.
    Zheng Y, Zhong XL, Li ZY, Xia YN (2014) Successive, seed-mediated growth for the synthesis of single-crystal gold NSs with uniform diameters controlled in the range of 5-150 nm. Part Part Syst Charact 31(2):266–273.  https://doi.org/10.1002/ppsc.201300256 CrossRefGoogle Scholar
  25. 25.
    Hill EH, Hanske C, Johnson A, Yate L, Jelitto H, Schneider GA, Liz-Marzan LM (2017) Metal nanoparticle growth within clay-polymer nacre-inspired materials for improved catalysis and plasmonic detection in complex biofluids. Langmuir 25(6):3887–3893.  https://doi.org/10.1021/la803831c CrossRefGoogle Scholar
  26. 26.
    Greeneltch NG, Blaber MG, Henry AI, Schatz GC, Duyne RPV (2013) Immobilized nanorod assemblies fabrication and understanding of large area surface-enhanced Raman spectroscopy substrates. Anal Chem 85(4):2297–2303.  https://doi.org/10.1021/ac303269w CrossRefPubMedGoogle Scholar
  27. 27.
    Liu G, Li Y, Duan G, Wang JJ, Liang GH, Gai WP (2011) Tunable surface plasmon resonance and strong SERS performances of Au opening-nanoshell ordered arrays. ACS Appl Mater Interfaces 4(1):1–5.  https://doi.org/10.1021/am201455x CrossRefPubMedGoogle Scholar
  28. 28.
    Sugawa K, Akiyama T, Kawazumi H, Yamada S (2009) Plasmon-enhanced photocurrent generation from self-assembled monolayers of phthalocyanine by using gold nanoparticle films. Langmuir 25(6):3887–3893.  https://doi.org/10.1021/la049842s. CrossRefPubMedGoogle Scholar
  29. 29.
    Hu JW, Han GB, Ren B, Sun SG, Tian ZQ (2004) Theoretical consideration on preparing silver particle films by adsorbing NSs from bulk colloids to an air-water interface. Langmuir 20(20):8831–8838.  https://doi.org/10.1103/PhysRevB.6.4370. CrossRefPubMedGoogle Scholar
  30. 30.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379.  https://doi.org/10.1103/PhysRevB.6.4370. CrossRefGoogle Scholar
  31. 31.
    Hao F, Larsson EM, Ali TA, Sutherland DS, Nordlander P (2008) Shedding light on dark plasmons in gold nanorings. Chem Phys Lett 458(4-6):262–266.  https://doi.org/10.1016/j.cplett.2008.04.126 CrossRefGoogle Scholar
  32. 32.
    Shafiei F, Monticone F, Le KQ, Liu XX, Hartsfield T, Alu A, Li XQ (2013) A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol 8(2):95–99.  https://doi.org/10.1038/nnano.2012.249 CrossRefPubMedGoogle Scholar
  33. 33.
    Liu XY, Osada M, Kitamura K, Nagata T, Si DH (2017) Ferroelectric-assisted gold NSs array for centimeter-scale highly reproducible SERS substrates. Sci Rep 7(1):3630.  https://doi.org/10.1038/s41598-017-03301-y CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kulkarni V, Prodan E, Nordlander P (2013) Quantum plasmonics: optical properties of a nanomatryushka. Nano Lett 13(12):5873–5879.  https://doi.org/10.1021/nl402662e CrossRefPubMedGoogle Scholar
  35. 35.
    Zhu WQ, Esteban R, Borisov AG, Baumberg JJ, Nordlander P, Lezec HJ, Aizpurua J, Crozier KB (2016) Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat Commun 7:11495.  https://doi.org/10.1038/ncomms11495 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lin L, Zapata M, Xiong M, Liu Z, Wang S, Xu H, Borisow AG, Gu H, Nordlander P, Aizpurua J, Ye J (2015) Nanooptics of plasmonic nanomatryoshkas: shrinking the size of a core-shell junction to subnanometer. Nano Lett 15(10):6419–6428.  https://doi.org/10.1021/acs.nanolett.5b02931 CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang H, Yang S, Zhou Q, Yang LK, Wang PJ, Fang Y (2017) The suitable condition of using LSPR model in SERS: LSPR effect versus chemical effect on microparticles surface-modified with nanostructures. Plasmonics 12(1):77–81.  https://doi.org/10.1007/s11468-016-0231-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics and Material Engineering ApartmentDalian Nationality UniversityDalianChina
  2. 2.National Key Laboratory of Science and Technology on Tunable LaserHarbin Institute of TechnologyHarbinChina

Personalised recommendations