Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1741–1748 | Cite as

Dielectric Materials Containing Active Dielectric-Metal Composite Nanoparticles as Double Negative Materials in the Visible

  • Kwang-Hyon Kim
Article

Abstract

In the visible spectral range, Mie resonance-based double negativity has still not been observed in all-dielectric metamaterials due to the lack of dielectrics with sufficiently high refractive indices. In this work, the dielectric materials containing nanospheres of gain-metal nanocomposites are proposed as double negative materials operating in the visible. They are embedded with two types of composite nanospheres: one contributes to the negative permeability via magnetic Mie resonance facilitated by gain-assisted high indices of composite nanospheres and the other one to the negative permittivity via plasmonic dipolar resonance in the same spectral range. The figure-of-merit of these materials reaches up to infinity or even can be negative, implying the gain, depending on the structural and material parameters. The proposed materials can find broad applications as loss-free negative index materials in the visible and near-infrared.

Keywords

Double negative materials Mie resonance Metal nanocomposites Surface plasmon resonance Gain materials 

References

  1. 1.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969.  https://doi.org/10.1103/PhysRevLett.85.3966 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Padilla WJ, Basov DN, Smith DR (2006) Negative refractive index metamaterials. Mater Today 9(7-8):28–35.  https://doi.org/10.1016/S1369-7021(06)71573-5 CrossRefGoogle Scholar
  3. 3.
    Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1(1):41–48.  https://doi.org/10.1038/nphoton.2006.49 CrossRefGoogle Scholar
  4. 4.
    Zhang S, Fan W, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ (2005) Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 95(13):137404.  https://doi.org/10.1103/PhysRevLett.95.137404 CrossRefPubMedGoogle Scholar
  5. 5.
    Lezec HJ, Dionne JA, Atwater HA (2007) Negative refraction at visible frequencies. Science 316(5823):430–432.  https://doi.org/10.1126/science.1139266 CrossRefPubMedGoogle Scholar
  6. 6.
    Dolling G, Wegener M, Soukoulis CM, Linden S (2007) Negative-index metamaterial at 780 nm wavelength. Opt Lett 32(1):53–55.  https://doi.org/10.1364/OL.32.000053 CrossRefPubMedGoogle Scholar
  7. 7.
    Xiao S, Chettiar UK, Kildishev AV, Drachev VP, Shalaev VM (2009) Yellow-light negative-index metamaterials. Opt Lett 34(22):3478–3480.  https://doi.org/10.1364/OL.34.003478 CrossRefPubMedGoogle Scholar
  8. 8.
    Xiao S, Drachev VP, Kildishev AV, Ni X, Chettiar UK, Yuan HK, Shalaev VM (2010) Loss-free and active optical negative-index metamaterials. Nature 466(7307):735–738.  https://doi.org/10.1038/nature09278 CrossRefPubMedGoogle Scholar
  9. 9.
    Atre AC, Garcia-Etxarri A, Alaeian H, Dionne JA (2013) A broadband negative index metamaterial at optical frequencies. Adv Opt Mater 1(4):327–333.  https://doi.org/10.1002/adom.201200022 CrossRefGoogle Scholar
  10. 10.
    Fruhnert M, Muhlig S, Lederer F, Rockstuhl C (2014) Towards negative index self-assembled metamaterials. Phys Rev B 89(7):075408.  https://doi.org/10.1103/PhysRevB.89.075408 CrossRefGoogle Scholar
  11. 11.
    Dong Z-G, Liu H, Li T, Zhu Z-H, Wang S-M, Cao J-X, Zhu S-N, Zhang X (2010) Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots. Appl Phys Lett 96(4):044104.  https://doi.org/10.1063/1.3302409 CrossRefGoogle Scholar
  12. 12.
    Wuestner S, Pusch A, Tsakmakidis KL, Hamm JM, Hess O (2010) Overcoming losses with gain in a negative refractive index metamaterial. Phys Rev Lett 105(12):127401.  https://doi.org/10.1103/PhysRevLett.105.127401 CrossRefPubMedGoogle Scholar
  13. 13.
    Ferrari L, Wu C, Lepage D, Zhang X, Liu Z (2015) Hyperbolic metamaterials and their applications. Prog Quantum Electron 40:1–40.  https://doi.org/10.1016/j.pquantelec.2014.10.001 CrossRefGoogle Scholar
  14. 14.
    Jahani S, Jacob Z (2016) All-dielectric metamaterials. Nat Nanotechnol 11(1):23–36.  https://doi.org/10.1038/nnano.2015.304 CrossRefPubMedGoogle Scholar
  15. 15.
    Baranov DG, Zuev DA, Lepeshov SI, Kotov OV, Krasnok AE, Evlyukhin AB, Chichkov BN (2017) All-dielectric nanophotonics: the quest for better materials and fabrication techniques. Optica 4(7):814–825.  https://doi.org/10.1364/OPTICA.4.000814 CrossRefGoogle Scholar
  16. 16.
    Holloway CL, Kuester EF, Baker-Jarvis J, Kabos P (2003) A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans Antennas Propag 51(10):2596–2603.  https://doi.org/10.1109/TAP.2003.817563 CrossRefGoogle Scholar
  17. 17.
    Wheeler MS, Aitchison JS, Mojahedi M (2005) Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies. Phys Rev B 72(19):193103.  https://doi.org/10.1103/PhysRevB.72.193103 CrossRefGoogle Scholar
  18. 18.
    Lai Y-C, Chen C-K, Yang Y-H, Yen T-J (2012) Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators. Opt Express 20(3):2876–2880.  https://doi.org/10.1364/OE.20.002876 CrossRefPubMedGoogle Scholar
  19. 19.
    Wang J, Xu Z, Du B, Xia S, Wang J, Ma H, Qu S (2012) Achieving all-dielectric left-handed metamaterials via single-sized dielectric resonators. J Appl Phys 111(4):044903.  https://doi.org/10.1063/1.3686200 CrossRefGoogle Scholar
  20. 20.
    Du B, Wang J, Xu Z, Xia S, Wang J, Qu S (2014) Band split in multiband all-dielectric left-handed metamaterials. J Appl Phys 115(23):234104.  https://doi.org/10.1063/1.4883962 CrossRefGoogle Scholar
  21. 21.
    Zhao Q, Zhou J, Zhang F, Lippens D (2009) Mie resonance-based dielectric metamaterials. Mater Today 12(12):60–69.  https://doi.org/10.1016/S1369-7021(09)70318-9 CrossRefGoogle Scholar
  22. 22.
    Sang Z-F, Li Z-Y (2005) Effective negative index of graded granular composites with metallic magnetic particles. Phys Lett A 334(5-6):422–428.  https://doi.org/10.1016/j.physleta.2004.11.047 CrossRefGoogle Scholar
  23. 23.
    Shi Z-C, Fan R-H, Zhang Z-D, Qian L, Gao M, Zhang M, Zheng L-T, Zhang X-H, Yin L-W (2012) Random composites of nickel networks supported by porous alumina toward double negative materials. Adv Mater 24(17):2349–2352.  https://doi.org/10.1002/adma.201200157 CrossRefPubMedGoogle Scholar
  24. 24.
    Shi Z-C, Fan R-H, Zhang Z-D, Yan K-L, Zhang X-H, Sun K, Liu X-F, Wang C-G (2013) Experimental realization of simultaneous negative permittivity and permeability in Ag/Y3Fe5O12 random composites. J Mater Chem C 1(8):1633–1637.  https://doi.org/10.1039/c2tc00479h CrossRefGoogle Scholar
  25. 25.
    Sun K, Zhang Z-D, Fan R-H, Chen M, Cheng C-B, Hou Q, Zhang X-H, Liu Y (2015) Random copper/yttrium iron garnet composites with tunable negative electromagnetic parameters prepared by in situ synthesis. RSC Adv 5(75):61155–61160.  https://doi.org/10.1039/C5RA09882C CrossRefGoogle Scholar
  26. 26.
    Hu X, Jiang P, Xin C, Yang H, Gong Q (2009) Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching. Appl Phys Lett 94(3):031103.  https://doi.org/10.1063/1.3073712 CrossRefGoogle Scholar
  27. 27.
    Asadi VR, Malek-Mohammad M, Khorasani S (2011) All-optical switch based on Fano resonance in metal nanocomposite photonic crystals. Opt Commun 284(8):2230–2235.  https://doi.org/10.1016/j.optcom.2010.12.085 CrossRefGoogle Scholar
  28. 28.
    Kim K-H, Griebner U, Herrmann J (2012) Theory of passive mode locking of solid-state lasers using metal nanocomposites as slow saturable absorbers. Opt Lett 37(9):1490–1492.  https://doi.org/10.1364/OL.37.001490 CrossRefPubMedGoogle Scholar
  29. 29.
    Kim K-H, Griebner U, Herrmann J (2012) Theory of passive mode-locking of semiconductor disk lasers in the blue spectral range by metal nanocomposites. Opt Express 20(15):16174–16179.  https://doi.org/10.1364/OE.20.016174 CrossRefGoogle Scholar
  30. 30.
    Kang Z, Xu Y, Zhang L, Jia Z, Liu L, Zhao D, Feng Y, Qin G, Qin W (2013) Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers. Appl Phys Lett 103(4):041105.  https://doi.org/10.1063/1.4816516 CrossRefGoogle Scholar
  31. 31.
    Kim K-H, Husakou A, Herrmann J (2012) Slow light in dielectric composite materials of metal nanoparticles. Opt Express 20(23):25790–25797.  https://doi.org/10.1364/OE.20.025790 CrossRefPubMedGoogle Scholar
  32. 32.
    Kim K-H, Choe S-H (2017) Slow and stopped light in active gain composite materials of metal nanoparticles: ultralarge group index-bandwidth product predicted. Ann Phys (Berlin) 529(8):1700103.  https://doi.org/10.1002/andp.201700103 CrossRefGoogle Scholar
  33. 33.
    Goncharenko AV, Pinchuk AO (2014) Broadband epsilon-near-zero composites made of metal nanospheroids. Opt Mater Express 4(6):1276–1286.  https://doi.org/10.1364/OME.4.001276 CrossRefGoogle Scholar
  34. 34.
    Kim K-H Unity-order nonlinear optical index change in epsilon-near-zero composite materials of gain media and metal nanoparticles. Ann Phys (Berlin).  https://doi.org/10.1002/andp.201700259 CrossRefGoogle Scholar
  35. 35.
    Husakou A, Herrmann J (2014) Quasi-phase-matched high-harmonic generation in composites of metal nanoparticles and a noble gas. Phys Rev A 90(2):023831.  https://doi.org/10.1103/PhysRevA.90.023831 CrossRefGoogle Scholar
  36. 36.
    Moroz A (2009) Localized resonances of composite particles. J Phys Chem C 113(52):21604–21610.  https://doi.org/10.1021/jp9082568 CrossRefGoogle Scholar
  37. 37.
    Palik ED (1985) Handbook of optical properties of solids. Academic Press, OrlandoGoogle Scholar
  38. 38.
    Kim K-H, Yurkin MA (2015) Time-domain discrete-dipole approximation for simulation of temporal response of plasmonic nanoparticles. Opt Express 23(12):15555–15564.  https://doi.org/10.1364/OE.23.015555 CrossRefPubMedGoogle Scholar
  39. 39.
    Agrawal GP (2001) Nonlinear fiber optics, 3rd edn. Academic Press, San DiegoGoogle Scholar
  40. 40.
    van de Hulst HC (1981) Light scattering by small particles. Dover, New YorkGoogle Scholar
  41. 41.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley-Interscience, New YorkGoogle Scholar
  42. 42.
    Chettiar UK, Kildishev AV, Yuan H-K, Cai W, Xiao S, Drachev VP, Shalaev VM (2007) Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. Opt Lett 32(12):1671–1673.  https://doi.org/10.1364/OL.32.001671 CrossRefPubMedGoogle Scholar
  43. 43.
    Lo D, Parris JE, Lawless JL (1993) Laser and fluorescence properties of dye-doped sol-gel from 400 nm to 800 nm. Appl Phys B Lasers Opt 56(6):385–390.  https://doi.org/10.1007/BF00324537 CrossRefGoogle Scholar
  44. 44.
    Benfey DP, Brown DC, Davis SJ, Piper LG, Foutter RF (1992) Diode-pumped dye laser analysis and design. Appl Opt 31(33):7034–7041.  https://doi.org/10.1364/AO.31.007034 CrossRefPubMedGoogle Scholar
  45. 45.
    Li Z-Y, Xia Y (2010) Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett 10(1):243–249.  https://doi.org/10.1021/nl903409x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of LasersState Academy of SciencesPyongyangDemocratic People’s Republic of Korea

Personalised recommendations