, Volume 13, Issue 5, pp 1735–1739 | Cite as

Nanofilmed Fourier-Transformed Spectrometer with the Interference of Surface Plasmon Wave

  • Liangping XiaEmail author
  • Chunlei Du


A miniature Fourier-transformed spectrometer based on the subwavelength slit-groove configuration with the interference of surface plasmon wave is proposed. By gradually increasing the set distance of the slit and groove, the interference fringes with different optical path difference is obtained. By then adding the Fourier-transform process, the spectrum of the incident light is recovered. By analyzing the interference in the slit-groove structure, the theory of the spectrometer is obtained. With the finite difference time domain (FDTD) method, the structure parameters are optimized firstly and then the spectrometer in spectrum recovery is demonstrated and the resolution of 3.84 nm is achieved at the wavelength of 750 nm.


Spectrometer Surface plasma Fourier transforms Interference 


Funding Information

This work was supported by the Natural Science Foundation of China (61775213, 61504147) and West Light Foundation of Chinese Academy of Sciences.


  1. 1.
    Grüneis H, Penker M, Höferl KM (2016) The full spectrum of climate change adaptation: testing an analytical framework in Tyrolean mountain agriculture (Austria). Spring 5(1848):1–13Google Scholar
  2. 2.
    Willigers BJA, Krogstad EJ, Wijbrans JR (Sep. 2001) Comparison of thermochronometers in a slowly cooled granulite terrain: Nagssugtoqidian Orogen, West Greenland. J Petrol 42(9):1729–1749. CrossRefGoogle Scholar
  3. 3.
    Tarugi P, Averna M (Jan. 2011) Hypobetalipoproteinemia: genetics, biochemistry, and clinical spectrum. Adv Clin Chem 54:81–107. CrossRefPubMedGoogle Scholar
  4. 4.
    Rossignol DA, Genuis SJ, Frye RE (Feb. 2014) Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry 4:1–23CrossRefGoogle Scholar
  5. 5.
    Goold JC, Fish PJ (Apr. 1998) Broadband spectra of seismic survey air-gun emissions, with reference to dolphin auditory thresholds. J Acoust Soc Am 103(4):2177–2184. CrossRefPubMedGoogle Scholar
  6. 6.
    J. Sin, W. H. Lee, D. Popa, and H. E. Stephanou, “Assembled Fourier transform micro-spectrometer”, Proc. of SPIE, Vol. 6109, pp.610904–610908, Jan. 2006Google Scholar
  7. 7.
    J. Antoszewski, A. Keating, K. Winchester, T. Nguyen, D. Silva, C. Musca, J. Dell, O. Samardzic and L. Faraone, “Tunable Fabry-Perot filters operating in the 3 to 5 um range for infrared micro-spectrometer applications”, Proc. of SPIE, Vol. 6186, pp.618608–618609, Jan. 2006Google Scholar
  8. 8.
    Cheben P, Schmid JH, Delage A, Densmore A, Janz S, Lamontagne B, Lapointe J, Post E, Waldron P, Xu D-X (Mar. 2007) A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with submicrometer aperture waveguides. Opt Express 15(5):2299–2306. CrossRefPubMedGoogle Scholar
  9. 9.
    Xia Z, Eftekhar AA, Soltani M, Momeni B, Li Q, Chamanzar M, Yegnanarayanan S, Adibi A (Jun. 2011) High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Opt Express 19(13):12356–12364. CrossRefPubMedGoogle Scholar
  10. 10.
    C. Y. Huang and W. C. Wang, “Birefringent prism based Fourier transform spectrometer”, Opt. Letters, Vol. 37 No. 9, pp.1559–1561, May. 2012Google Scholar
  11. 11.
    Xia L, Yang Z, Yin S, Deng Q, Du C (Jul. 2014) A method of realizing compact Fourier transform spectrometer without moving parts based on birefringent liquid crystal. Opt Eng 53(7):074109–074104. CrossRefGoogle Scholar
  12. 12.
    Dastmalchi B, Tassin P, Koschny T, Soukoulis CM (Sep. 2016) A new perspective on plasmonics: confinement and propagation length of surface plasmons for different materials and geometries. Adv Opt Mater 4(1):177–184. CrossRefGoogle Scholar
  13. 13.
    Khurgin JB (Jan. 2015) Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss 178:109–122. CrossRefPubMedGoogle Scholar
  14. 14.
    Lal S, Link S, Halas NJ (Jul. 2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648. CrossRefGoogle Scholar
  15. 15.
    Han Z, Zhang Y, Bozhevolnyi SI (Jun. 2015) Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime. Opt Lett 40(11):2533–2536. CrossRefPubMedGoogle Scholar
  16. 16.
    Chen J, Li Z, Zhang X, Xiao J, Gong Q (Mar. 2013) Submicron bidirectional all-optical plasmonic switches. Sci Rep 3(1):1451. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lalanne P, Hugonin JP (Aug. 2006) Interaction between optical nano-objects at metallo-dielectric interfaces. Nat Phys 2(8):551–556. CrossRefGoogle Scholar
  18. 18.
    Chen L, Robinson JT, Lipson M (Dec. 2006) Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface. Opt Express 14(26):12629–12636. CrossRefPubMedGoogle Scholar
  19. 19.
    Palik E, Ghosh G (1985) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar
  20. 20.
    Shi H, Wang C, Du C, Luo X, Dong X, Gao H (Sep. 2005) Beam manipulating by metallic nano-slits with variant widths. Opt Express 13(18):6815–6820. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Electronic Information EngineeringYangtze Normal UniversityChongqingChina
  2. 2.Chongqing Key Laboratory of Multi-scale Manufacturing TechnologyChongqing Institute of Green and Intelligent Technology, Chinese Academy of SciencesChongqingChina

Personalised recommendations