, Volume 13, Issue 5, pp 1729–1734 | Cite as

Plasmonic Coupling Effects on the Refractive Index Sensitivities of Plane Au-Nanosphere-Cluster Sensors

  • ChaoLing DuEmail author
  • Sheng Peng
  • WanChun Yang
  • DaNing Shi


Plasmonic coupling effects (between neighboring components) are able to red shift the peak wavelengths of dipolar-localized surface plasmon resonances (LSPRs) and increase the corresponding refractive index sensitivity of nanoparticle sensors. The coupling effects on plane Au-nanosphere-cluster (including nanosphere dimer, trimer, pentamer, and heptamer) sensors are numerically investigated by finite element method (FEM). We found that the coupling does not violate the quadratic response characteristics of LSPR peak wavelengths, hence the linear responses of the sensitivities to the bulk refractive index of Au cluster sensors. Yet, for nanosphere dimer sensors, they contribute to the exponential decrease of sensitivities with their gap distances, which follow the universal plasmon ruler behavior. The amplitude of their fractional sensitivity shift is revealed to be bulk refractive index independent, which is different from that of their fractional LSPR peak wavelength shift. These are analytically explained well in terms of an effective nanoparticle model. The present work also gives an upper sensitivity limit for Au nanosphere dimer systems and provides a method to estimate the interparticle separation between the two component nanospheres of the dimer.


Plasmonic coupling effects Refractive-index sensitivities Plane Au-nanosphere-cluster sensors Localized surface plasmon resonance (LSPR) Finite element method (FEM) 


Funding Information

This work was finically supported by the Fundamental Research Funds for the Central Universities (No. NS2016074) and by the Natural Science Foundation of China (No. 11774171).


  1. 1.
    Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498(7452):82–86. CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang W, Fischer H, Schmid T, Zenobi R, Martin OJF (2009) Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas. J Phys Chem C 113(33):14672–14675. CrossRefGoogle Scholar
  3. 3.
    Stockman MI (2015) Nanoplasmonic sensing and detection. Science 348(6232):287–288. CrossRefPubMedGoogle Scholar
  4. 4.
    Chikkaraddy R, De B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ (2016) Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535(7610):127–130. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Letts 3(8):1057–1062. CrossRefGoogle Scholar
  6. 6.
    Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124(35):10596–10604. CrossRefPubMedGoogle Scholar
  7. 7.
    Tao C, Gang C, Shuangxi X, Tom W, Hongyu C (2010) Scalable routes to janus Au-SiO2 and ternary Ag-Au-SiO2 nanoparticles. Chem Mater 22:3826–3828CrossRefGoogle Scholar
  8. 8.
    Larsson EM, Alegret J, Käll M, Sutherland DS (2007) Characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Letts 7(5):1256–1263. CrossRefGoogle Scholar
  9. 9.
    Mishra AK, Mishra SK (2016) Gas sensing in Kretschman configuration utilizing bi-metallic layer of rhodium-silver in visible region. Sens Actuat B-Chem. 237:969–973. CrossRefGoogle Scholar
  10. 10.
    Cao J, Tu MH, Sun T, Grattan KTV (2013) Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sens Actuat B-Chem 181:611–619. CrossRefGoogle Scholar
  11. 11.
    Salmanogli A, Nasseri B, Piskin E (2017) Plasmon-plasmon interaction effect on reproducible surface-enhanced Raman scattering for dye molecule detection. Sensors Actuators A Phys 262:87–98. CrossRefGoogle Scholar
  12. 12.
    Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461(7264):629–632. CrossRefPubMedGoogle Scholar
  13. 13.
    XH C, CC Z, Rothberg L, Ng MK (2008) Plasmon enhancement of bulk hetero-junction organic photovoltaic devices by electrode modification. Appl Phys Lett 93:123302CrossRefGoogle Scholar
  14. 14.
    Zhe L, XH C, Zhou JP, Jiang ZY, Huang SM, Zhu FR, Piao XQ, Sun Z (2015) Performance enhancement in inverted polymer solar cells incorporating ultrathin Au and LiF modified ZnO electron transporting interlayer. Org Electron 17:364–370CrossRefGoogle Scholar
  15. 15.
    JF W, XK J, JP Z, LK P, SM H, Chen XH (2016) Improved performance of polymer solar cells by thermal evaporation of AgAl alloy nanostructures into the hole-transport layer. ACS Appl Mater Interfaces 8:26098–26104CrossRefGoogle Scholar
  16. 16.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857. CrossRefPubMedGoogle Scholar
  17. 17.
    Urban AS, Shen XS, Wang YM, Large N, Wang H, Knight MW, Nordlander P, Chen HY, Halas NJ (2013) Three-dimensional plasmonic nanoclusters. Nano Lett 13(9):4399–4403. CrossRefPubMedGoogle Scholar
  18. 18.
    Bao K, Mirtin NA, Nordlander P (2010) Fano resonances in planar silver nanosphere clusters. Appl Phys A Mater Sci Process 100(2):333–339. CrossRefGoogle Scholar
  19. 19.
    Daniel WB, Mirin NA, Nordlander P (2006) Plasmon modes of nanosphere trimers and quadrumers. J Phys Chem B 110:12302–12310CrossRefGoogle Scholar
  20. 20.
    Jérémy B, Martin OJF (2014) Refractive index sensing with Fano resonant plasmonic nanostructures: a symmetry based nonlinear approach. Nano 6:15262Google Scholar
  21. 21.
    Erik M, Borja S, Peng C, Anders E, Bo L, Daniel A (2014) Optimizing the refractive index sensitivity of plasmonically coupled gold nanoparticles. Plasmonics 9:773–780CrossRefGoogle Scholar
  22. 22.
    Chen H, Sun Z, Ni W, Woo KC, Lin HQ, Sun L, Yan C, Wang J (2009) Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes. Small 5(18):2111–2119. CrossRefPubMedGoogle Scholar
  23. 23.
    Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10(8):3184–3189. CrossRefPubMedGoogle Scholar
  24. 24.
    Mirin NA, Bao K, Nordlander P (2009) Fano resonances in plasmonic nanoparticle aggregates. J Phys Chem A 113(16):4028–4034. CrossRefPubMedGoogle Scholar
  25. 25.
    Prashant KJ, Huang WY, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088CrossRefGoogle Scholar
  26. 26.
    Ophélie SF, Gaëtan L, Rabah B, Sabine S, Abdellatif A (2015) Dependence between the refractive-index sensitivity of metallic nanoparticles and the spectral position of their localized surface plasmon band: a numerical and analytical study. J Phys Chem C 119:28551–28559CrossRefGoogle Scholar
  27. 27.
    Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225. CrossRefPubMedGoogle Scholar
  28. 28.
    Du CL, Wang BB, Sun F, Huang ML, He CJ, Liu YW, Zhang XJ, Shi DN (2015) Refractive index sensitivities of plane Ag nanosphere cluster sensors. Sensor Actuat B-Chem. 215:142–145. CrossRefGoogle Scholar
  29. 29.
    Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP (1999) Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of sliver nanoparticles. J Phys Chem B 103(45):9846–9853. CrossRefGoogle Scholar
  30. 30.
    Du Y, Shi L, Hong M, Li H, Li D, Liu M (2013) A surface plasmon resonance biosensor based on gold nanoparticle array. Opt Commun 298–299:232–236. CrossRefGoogle Scholar
  31. 31.
    Figueiredo NM, Kubart T, Sanchez-García JA, Galindo RE, Climent-Font A, Cavaleiro A (2014) Optical properties and refractive index sensitivity of reactive sputtered oxide coatings with embedded Au clusters. J Appl Phys 115(6):063512. CrossRefGoogle Scholar
  32. 32.
    Khan AU, Zhao S, Liu GL (2016) Key parameter controlling the sensitivity of plasmonics metal nanoparticles: aspect ratio. J Phys Chem C 120(34):19353–19364. CrossRefGoogle Scholar
  33. 33.
    Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6(12):4370–4739. CrossRefGoogle Scholar
  34. 34.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin. CrossRefGoogle Scholar
  35. 35.
    Chau YFC, Syu JY, Chao CTC, Chiang HP, Lim CM (2017) Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications. J Phys D Appl Phys 50(4):045105. CrossRefGoogle Scholar
  36. 36.
    Du CL, Du CJ, You YM, Zhu Y, Jin SL, He CJ, Shi DN (2011) Numerical calculation the enhanced Raman scattering performances of individual Ag nanowire tips. Appl Opt 50(25):4922–4926. CrossRefGoogle Scholar
  37. 37.
    Iqbal T, Afsheen S (2016) Coupling efficiency of surface plasmon polaritons for 1D plasmonic grating: role of under- and over-milling. Plasmonics 11(5):1247–1256. CrossRefGoogle Scholar
  38. 38.
    Khoury CG, Norton SJ, Vo-Dinh T (2009) Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS Nano 3(9):2776–2788. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Xu HX, Käll M (2002) Modeling the optical response of nanoparticle-based surface plasmon resonance sensors. Sens Actuators B: Chem 87(2):244–249. CrossRefGoogle Scholar
  40. 40.
    Du CL, Huang ML, Chen T, Sun F, Wang BB, He CJ, Shi DN (2014) Linear or quadratic plasmon peak sensitivities for individual Au/Ag nanosphere sensors. Sensor Actuat B-Chem 203:812–816. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of ScienceNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations