Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1721–1728 | Cite as

Optical Circular Conversion Dichroism via Heterogeneous Planar Nanoplasmonic Metasurface

  • Atefe Fazel Najafabadi
  • Tavakol Pakizeh
Article

Abstract

Chirality as a physical phenomenon originating from lacking mirror symmetry in many natural substances exposes fascinating optical activities, including circular dichroism (CD) and optical circular conversion dichroism (O-CCD). While naturally occurring chiroptical properties are negligible in real substances, boosting these properties to significant levels is one of the main challenges for designing functional photonic and optoelectronic devices. Here, we introduce a new paradigm for the realization of planar metasurfaces with substantial O-CCD, reporting that considerable chiral effects of three-dimensional chiral structure are practically provided by feasible metasurfaces by picking out nanooscillators with strong near-field interaction, different optical properties including loss and radiation, and high overlap between their spectral positions. We apply this concept to heterogeneous nanoplasmonic structures, composed of L-pair of Au–Ag nanorods, as archetypical configurations for substantially raising dichroism compared to materially homogenous ones, i.e., Au–Au and Ag–Ag pairs with different length, respectively. The essential prerequisite for phase lag associated with the third dimension along lightwave propagation is compensated by proposed heterogeneity in metasurface design. Theoretical findings based on the simple hybridization model are adequately supported by the computational results.

Keywords

Nanoplasmonics Chirality Circular conversion dichroism Polarization Optical interaction 

Supplementary material

11468_2017_684_MOESM1_ESM.docx (333 kb)
ESM 1 (DOCX 333 kb).

References

  1. 1.
    Lee J, Tymchenko M, Argyropoulos C, Chen PY, Lu F, Demmerle F, Boehm G, Amann MC, Alu A, Belkin MA (2014) Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511(7507):65–69.  https://doi.org/10.1364/CLEO_QELS.2014.FTh4K.1 CrossRefPubMedGoogle Scholar
  2. 2.
    Ding F, Wang Z, He S, Shalaev VM, Kildishev AV (2015) Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 9(4):4111–4119.  https://doi.org/10.1021/acsnano.5b00218 CrossRefPubMedGoogle Scholar
  3. 3.
    Huang Y, Yao Z, Wang Q, Hu F, Xu X (2015) Coupling Tai Chi chiral metamaterials with strong optical activity in terahertz region. Plasmonics 10(4):1005–1011.  https://doi.org/10.1007/s11468-015-9892-7 CrossRefGoogle Scholar
  4. 4.
    Jakšić Z, Vuković S, Matovic J, Tanasković D (2010) Negative refractive index metasurfaces for enhanced biosensing. Materials 4(1):1–36.  https://doi.org/10.3390/ma4010001 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Xu K, Xiao Z, Tang J, Liu D, Ma X, Wang Z (2016) Dispersionless and giant optical activity in terahertz chiral metamaterials. Plasmonics 11(5):1257–1264.  https://doi.org/10.1007/s11468-015-0169-y CrossRefGoogle Scholar
  6. 6.
    Wang H, Wang X, Yan C, Zhao H, Zhang J, Santschi C, Martin OJ (2017) Full color generation using silver tandem nanodisks. ACS Nano 11(5):4419–4427.  https://doi.org/10.1021/acsnano.6b08465 CrossRefPubMedGoogle Scholar
  7. 7.
    Wu PC, Tsai WY, Chen WT, Huang YW, Chen TY, Chen JW, Liao CY, Chu CH, Sun G, Tsai DP (2017) Versatile polarization generation with aluminum plasmonic metasurface. Nano Lett 17(1):445–452.  https://doi.org/10.1021/acs.nanolett.6b04446 CrossRefPubMedGoogle Scholar
  8. 8.
    Wang Z, Wang Y, Adamo G, Teh BH, Wu QYS, Teng J, Sun H (2016) A novel chiral metasurface with controllable circular dichroism induced by coupling localized and propagating modes. Adv Opt Mater 4(6):883–888.  https://doi.org/10.1002/adom.201600063 CrossRefGoogle Scholar
  9. 9.
    Tang L, Li S, Xu L, Ma W, Kuang H, Wang L, Xu C (2015) Chirality-based Au@Agnanorod dimers sensor for ultrasensitive PSA detection. ACS Appl Mater Interfaces 7(23):12708–12712.  https://doi.org/10.1021/acsami.5b01259 CrossRefPubMedGoogle Scholar
  10. 10.
    Zhao Y, Belkin MA, Alù A (2012) Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun 3:870.  https://doi.org/10.1038/ncomms1877 CrossRefPubMedGoogle Scholar
  11. 11.
    Nesterov ML, Yin X, Schäferling M, Giessen H, Weiss T (2016) The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy. ACS Photonics 3(4):578–583.  https://doi.org/10.1021/acsphotonics.5b00637 CrossRefGoogle Scholar
  12. 12.
    Yan C, Wang X, Raziman TV, Martin OJ (2017) Twisting fluorescence through extrinsic chiral antennas. Nano Lett 17(4):2265–2272.  https://doi.org/10.1021/acs.nanolett.6b04906 CrossRefPubMedGoogle Scholar
  13. 13.
    Cotrufo M, Osorio CI, Koenderink AF (2016) Spin-dependent emission from arrays of planar chiral nanoantennas due to lattice and localized plasmon resonances. ACS Nano 10(3):3389–3397.  https://doi.org/10.1021/acsnano.5b07231 CrossRefPubMedGoogle Scholar
  14. 14.
    Wang Z, Jia H, Yao K, Cai W, Chen H, Liu Y (2016) Circular dichroism metamirrors with near-perfect extinction. ACS Photonics 3(11):2096–2101.  https://doi.org/10.1021/acsphotonics.6b00533 CrossRefGoogle Scholar
  15. 15.
    Plum E, Zheludev NI (2015) Chiral mirrors. Appl Phys Lett 106(22):221901.  https://doi.org/10.1063/1.4921969 CrossRefGoogle Scholar
  16. 16.
    Lu J, Chang YX, Zhang NN, Wei Y, Li AJ, Tai J, Xue Y, Wang ZY, Yang Y, Zhao L, Lu ZY (2017) Chiral plasmonic nanochains via the self-assembly of gold nanorods and helical glutathione oligomers facilitated by cetyltrimethylammonium bromide micelles. ACS Nano 11(4):3463–3475.  https://doi.org/10.1021/acsnano.6b07697 CrossRefPubMedGoogle Scholar
  17. 17.
    Lu F, Tian Y, Liu M, Su D, Zhang H, Govorov AO, Gang O (2013) Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Lett 13(7):3145–3151.  https://doi.org/10.1021/nl401107g CrossRefPubMedGoogle Scholar
  18. 18.
    Zhan P, Dutta PK, Wang P, Song G, Dai M, Zhao SX, Wang ZG, Yin P, Zhang W, Ding B, Ke Y (2017) Reconfigurable three-dimensional gold nanorod plasmonic nanostructures organized on DNA origami tripod. ACS Nano 11(2):1172–1179.  https://doi.org/10.1021/acsnano.6b06861 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jia X, Meng Q, Yuan C, Zhou Z, Wang X (2016) Anovel chiral nano structure for optical activities and negative refractive index. Optik 127(14):5738–5742.  https://doi.org/10.1016/j.ijleo.2016.02.067 CrossRefGoogle Scholar
  20. 20.
    Yin X, Schäferling M, Metzger B, Giessen H (2013) Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model. Nano Lett 13(12):6238–6243.  https://doi.org/10.1021/nl403705k CrossRefPubMedGoogle Scholar
  21. 21.
    Han B, Shi L, Gao X, Guo J, Hou K, Zheng Y, Tang Z (2016) Ultra-stable silica-coated chiral Au-nanorod assemblies: core–shell nanostructures with enhanced chiroptical properties. Nano Res 9(2):451–457.  https://doi.org/10.1007/s12274-015-0926-4 CrossRefGoogle Scholar
  22. 22.
    Zhou C, Duan X, Liu N (2015) A plasmonic nanorod that walks on DNA origami. Nat Commun 6:8102.  https://doi.org/10.1038/ncomms9102 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chigrin DN, Kremers C, Zhukovsky SV (2011) Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials. Appl Phys B Lasers Opt 105(1):81–97.  https://doi.org/10.1007/s00340-011-4733-7 CrossRefGoogle Scholar
  24. 24.
    Tian X, Fang Y, Sun M (2015) Formation of enhanced uniform chiral fields in symmetric dimer nanostructures. Sci Rep 5(1):17534.  https://doi.org/10.1038/srep17534 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wu L, Yang Z, Cheng Y, Lu Z, Zhang P, Zhao M, Gong R, Yuan X, Zheng Y, Duan J (2013) Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials. Opt Express 21(5):5239–5246.  https://doi.org/10.1364/OE.21.005239 CrossRefPubMedGoogle Scholar
  26. 26.
    Plum E, Fedotov VA, Zheludev NI (2009) Planar metamaterial with transmission and reflection that depend on the direction of incidence. Appl Phys Lett 94(13):131901.  https://doi.org/10.1063/1.3109780 CrossRefGoogle Scholar
  27. 27.
    Fedotov VA, Mladyonov PL, Prosvirnin SL, Rogacheva AV, Chen Y, Zheludev NI (2006) Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys Rev Lett 97(16):167401.  https://doi.org/10.1103/PhysRevLett.97.167401 CrossRefPubMedGoogle Scholar
  28. 28.
    Fazel Najafabadi A, Pakizeh T (2017) Analytical chiroptics of 2d and 3d nanoantennas. ACS Photonics 4(6):1447–1452.  https://doi.org/10.1021/acsphotonics.7b00179 CrossRefGoogle Scholar
  29. 29.
    Khanikaev AB, Arju N, Fan Z, Purtseladze D, Lu F, Lee J, Sarriugarte P, Schnell M, Hillenbrand R, Belkin MA, Shvets G (2016) Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials. Nat Commun 7:12045.  https://doi.org/10.1038/ncomms12045 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fazel Najafabadi A, Pakizeh T (2017) Optical absorbing origin of chiroptical activity in planar plasmonic metasurfaces. Sci Rep 7(1):10251.  https://doi.org/10.1038/s41598-017-10532-6 CrossRefGoogle Scholar
  31. 31.
    Banzer P, Woźniak P, Mick U, De Leon I, Boyd RW (2016) Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection. Nat Commun 7:13117.  https://doi.org/10.1038/ncomms13117 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Toroghi S, Lumdee C, Kik PG (2015) Heterogeneous plasmonic trimers for enhanced nonlinear optical absorption. Appl Phys Lett 106(10):103102.  https://doi.org/10.1063/1.4914454 CrossRefGoogle Scholar
  33. 33.
    Nemiroski A, Gonidec M, Fox JM, Jean-Remy P, Turnage E, Whitesides GM (2014) Engineering shadows to fabricate optical metasurfaces. ACS Nano 8(11):11061–11070.  https://doi.org/10.1021/nn504214b CrossRefPubMedGoogle Scholar
  34. 34.
    Vial A, Grimault AS, Macías D, Barchiesi D, de La Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71(8):085416.  https://doi.org/10.1103/PhysRevB.71.085416 CrossRefGoogle Scholar
  35. 35.
    Pakizeh T (2012) Unidirectional radiation of a magnetic dipole coupled to an ultracompact nanoantenna at visible wavelengths. J Opt Soc Am B 29(9):2446–2452.  https://doi.org/10.1364/JOSAB.29.002446 CrossRefGoogle Scholar
  36. 36.
    Draine BT, Flatau PJ (2008) Discrete-dipole approximation for periodic targets: theory and tests. J Opt Soc Am A 25(11):2693–2703.  https://doi.org/10.1364/JOSAA.25.002693 CrossRefGoogle Scholar
  37. 37.
    Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. John Wiley & Sons, New YorkGoogle Scholar
  38. 38.
    Najafabadi AF, Pakizeh T (2016) Optical properties of plasmonic nanopillars in extended quasi-static limits. J Opt Soc Am B 33(4):511–518.  https://doi.org/10.1364/JOSAB.33.000511 CrossRefGoogle Scholar
  39. 39.
    Weiland T (2003) In: Monk P, Carstensen C, Funken S, Hackbusch W, Hoppe RHW (eds) Finite integration method and discrete electromagnetism in computational electromagnetics. Springer, Berlin, pp 183–198Google Scholar
  40. 40.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379.  https://doi.org/10.1103/PhysRevB.6.4370 CrossRefGoogle Scholar
  41. 41.
    McPeak KM, Jayanti SV, Kress SJP, Meyer S, Iotti S, Rossinelli A, Norris DJ (2015) Plasmonic films can easily be better: rules and recipes. ACS Photonics 2(3):326–333.  https://doi.org/10.1021/ph5004237 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringK. N. Toosi University of TechnologyTehranIran

Personalised recommendations