Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1699–1704 | Cite as

Boltzmann Finite-Difference Time-Domain Method Research Electromagnetic Wave Oblique Incidence into Plasma

  • Jian-Xiao Liu
  • Ze-Kun Yang
  • Lu Ju
  • Lei-Qing Pan
  • Zhi-Gang Xu
  • Hong-Wei Yang
Article
  • 75 Downloads

Abstract

Boltzmann equation is carried out to study the micromechanism of interaction between electromagnetic wave and plasma. The Boltzmann-FDTD iteration formula that is about electromagnetic wave obliquely incident into plasma under one-dimensional case is deduced. The reflection coefficient and transmission coefficient of the plasma flat are calculated when the electromagnetic wave incidents into plasma medium at different incident angles. The correctness of the algorithm is proved through some examples in this paper. The change law and mechanism of the electromagnetic wave energy, the reflection coefficient, and incidence coefficient with the changing of the incident angle are analyzed. The evolution law when the distribution function of particles of plasma is acting with electromagnetic wave is study. This work will help us to study the macro and micro relationship about plasma matters in the future.

Keywords

Boltzmann equation Distribution function Finite-difference time-domain (FDTD) Oblique incidence Plasma 

Notes

Funding Information

This work is supported by the Natural Science Foundation of China (No. 11674174) and the College of Sciences of Nanjing Agricultural University (Grant No. CoS201410).

References

  1. 1.
    Heh DY, Tan EL (2011) Unified efficient fundamental ADI-FDTD schemes for lossy media. Progress Electromag Res B 32:217–242.  https://doi.org/10.2528/PIERB11051801 CrossRefGoogle Scholar
  2. 2.
    Samimi A, Simpson JJ (2015) An efficient 3-D FDTD model of electromagnetic wave propagation in magnetized plasma. IEEE Trans Antennas Propag 63(1):269–279.  https://doi.org/10.1109/TAP.2014.2366203 CrossRefGoogle Scholar
  3. 3.
    Liu J-X, Yang Z-K, Yang HW, Xi Q-K, Li AP, You X (2013) Properties of the band gap of two-dimensional plasma photonic crystals. J Russ Laser Res 34(3):262–266.  https://doi.org/10.1007/s10946-013-9350-y CrossRefGoogle Scholar
  4. 4.
    Shao-Bin L, Jin-Jun M, Nai-Chang Y (2004a) A JEC-FDTD implementation for anisotropic magnetized plasmas (in Chinese). Acta Phys Sin 53(3):783–787Google Scholar
  5. 5.
    Luebbers RJ, Hunsberger F, Kunz KS (1991) A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma. IEEE Trans Antennas Propag 39(1):29–34.  https://doi.org/10.1109/8.64431 CrossRefGoogle Scholar
  6. 6.
    Qian ZH, Chen RS, Yang HW (2005) FDTD analysis of magnetized plasma using PLRC scheme. Seventeenth Asia-Pacific Microwave Conference, Suzhou China, pp 2202–2204Google Scholar
  7. 7.
    Yang H-W, Yuan H, Chen R-S, Yang Y (2007) SO-FDTD analysis of anisotropic magnetized plasma (in Chinese). Acta Phys Sin 56(3):1443–1446Google Scholar
  8. 8.
    Yang H-W, Ru-Shan C, Yun Z (2006) SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma (in Chinese). Acta Phys Sin 55(7):3464–3469Google Scholar
  9. 9.
    Yang L, Xu H, Dong S, Wang H (2015) Electromagnetic scattering by bianisotropic dispersive media by using Z-FDTD method (in Chinese). Chin J Radio Sci 30(3):423–429Google Scholar
  10. 10.
    Hou Z, Xu Z, Xiong Y, Zhenwei Z, Wu R (2015) Improved SO-FDTD method for non-magnetized plasmas (in Chinese). J Xidian Univ 42(3):168–173Google Scholar
  11. 11.
    Cerri G, Moglie F, Montesi R, Russo P, Vecchioni E (2008) FDTD solution of the Maxwell-Boltzmann system for electromagnetic wave propagation in a plasma. IEEE Trans Anten Prop 56(8):2584–2588.  https://doi.org/10.1109/TAP.2008.927505 CrossRefGoogle Scholar
  12. 12.
    Zhu A, Chen Z, Yang Y, Liu X, Zhen Y (2015) FDTD numerical simulation of interaction between plasma and electromagnetic wave (in Chinese). Modern Radar 37(8):72–76Google Scholar
  13. 13.
    Wen-Bo C, Xue-Yu G, Lu X-Q, Jun F, Liao X-B, Guo-Yu H, Deng X-J (2014) Analysis of one-dimensional electromagnetic wave transmission characteristics of plasma based on a kinetic theory model (in Chinese). Acta Phys Sin 63(21):214101–214105Google Scholar
  14. 14.
    Qian-Hong Z, Dong Z-W (2013) Theoretical study on the electron energy distribution function of weakly ionized air plasma (in Chinese). Acta Phys Sin 62(1):015201–015207Google Scholar
  15. 15.
    Lieberman Michael A, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing, Second edn. Wiley, HobokenGoogle Scholar
  16. 16.
    Cai Z, Fan Y, Hu Z, Li R, Wqang H (2016) The development and application of the moment method in the gas kinetic theory (in Chinese). Scientia Sinica Informationis 46(10):1465–1488Google Scholar
  17. 17.
    Wang Z, Yan L, Jia-Zhong Z (2016) Simulation of micro flow in the transition regime using effective-viscosity-based multi-relaxation-time lattice Boltzmann model (in Chinese). Acta Phys Sin 65(1):014703–014710Google Scholar
  18. 18.
    Wu H, Wang J (2011) Lattice Boltzmann simulations of rotating channel turbulent flow (in Chinese). J Aerospace Power 26(9):1928–1934Google Scholar
  19. 19.
    Yang HW (2011) Simulation and analysis of interaction between oblique incidence electromagnetic wave and plasma slab. Optik 122(11):945–948.  https://doi.org/10.1016/j.ijleo.2010.06.023 CrossRefGoogle Scholar
  20. 20.
    Yan-nan J, De-biao G, Bing W (2008) Slant incident plane wave introduced in 2D-FDTD for layered background (in Chinese). High Power Laser and Particle Beams 20(4):633–636Google Scholar
  21. 21.
    Hui C, Yuqiang Z, Zhongting L, Xuejun Z (2015) FDTD analysis for electromagnetic wave by layered medium problem under oblique incidence condition (in Chinese). Electron Measure Technol 38(10):140–143Google Scholar
  22. 22.
    Shao-bin L, Jin-jun M, Nai-chang Y (2004b) A novel FDTD simulation for plasma piecewise linear current density recursive convolution (in Chinese). Acta Phys Sin 53(3):778–782Google Scholar
  23. 23.
    Yang L-X, Xie Y-T, Kong W, Yu P-P, Wang G (2010) A novel finite-difference time-domain scheme for electromagnetic scattering by stratified anisotropic plasma under oblique incidence condition (in Chinese). Acta Phys Sin 59(9):6089–6087Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jian-Xiao Liu
    • 1
    • 2
  • Ze-Kun Yang
    • 3
  • Lu Ju
    • 2
  • Lei-Qing Pan
    • 4
  • Zhi-Gang Xu
    • 5
  • Hong-Wei Yang
    • 2
  1. 1.School of Electronics and Information EngineeringHengshui UniversityHebeiPeople’s Republic of China
  2. 2.Department of Physics, College of ScienceNanjing Agricultural UniversityNanjingPeople’s Republic of China
  3. 3.School of Information Science & EngineeringLanzhou UniversityLanzhouPeople’s Republic of China
  4. 4.College of Food Science and TechnologyNanjing Agricultural UniversityNanjingPeople’s Republic of China
  5. 5.College of AgricultureNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations