, Volume 13, Issue 5, pp 1659–1669 | Cite as

Solid and Hollow Gold Nanostructures for Nanomedicine: Comparison of Photothermal Properties

  • A. M. LopatynskyiEmail author
  • Y. O. Malymon
  • V. K. Lytvyn
  • I. V. Mogylnyi
  • A. E. Rachkov
  • A. P. Soldatkin
  • V. I. Chegel


The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages upon irradiation with a 100 mW 808 nm continuous-wave laser for the first time were experimentally compared under identical optical density and nanoparticle concentration conditions. Accompanying computer modeling of light absorption by the studied gold nanostructures revealed the general parameters influencing the photothermal efficiency, which is of significance for nanomedical applications. The spectral position of localized plasmonic excitations of the studied nanostructures ranged from 518 nm for solid gold nanoparticles to 718 nm for gold nanocages, which provided a possibility to observe a direct influence of the wavelength proximity between the localized surface plasmon resonance and laser line on the heat generation capability of the nanostructures. As a result, the best photothermal efficiency was registered for gold nanocages, which proves them as an efficient photothermal treatment agent and a possible candidate to build a nanocarrier platform for drug delivery with a controlled release. Light absorption modeling demonstrated an existence of optimal wall thickness for gold nanoshells that should lead to the maximum photothermal efficiency when irradiated with 808 nm light, which varied from about 0.1 to 0.4 in units of external nanoshell radius with an increase of the wall porosity. Additionally, computer modeling results show that increased wall porosity should lead to enhanced photothermal efficiency of polydisperse colloidal solutions of hollow gold nanostructures.


Localized surface plasmon resonance Gold nanoparticles Gold nanoshells Gold nanocages Photothermal plasmonic effect Nanocarrier 



The authors are very thankful for the financial support from Science and Technology Center in Ukraine (project N 6044; 2015-2017). We are deeply indebted to Prof. V. P. Kladko of V. E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine for performing XRD measurements and Dr. D. O. Klymchuk of M. G. Kholodny Institute of Botany of National Academy of Sciences of Ukraine for performing TEM measurements.


This study was funded by Science and Technology Center in Ukraine (grant number 6044).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yamamoto E, Kuroda K (2016) Colloidal mesoporous silica nanoparticles. Bull Chem Soc Jpn 89(5):501–539. CrossRefGoogle Scholar
  2. 2.
    Song XR, Goswami N, Yang HH, Xie J (2016) Functionalization of metal nanoclusters for biomedical applications. Analyst 141(11):3126–3140. CrossRefPubMedGoogle Scholar
  3. 3.
    Malgras V, Ji Q, Kamachi Y, Mori T, Shieh FK, Wu KCW et al (2015) Templated synthesis for nanoarchitectured porous materials. Bull Chem Soc Jpn 88(9):1171–1200. CrossRefGoogle Scholar
  4. 4.
    Guerrero AR, Hassan N, Escobar CA, Albericio F, Kogan MJ, Araya E (2014) Gold nanoparticles for photothermally controlled drug release. Nanomedicine (Lond) 9(13):2023–2039. CrossRefGoogle Scholar
  5. 5.
    Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115(19):10530–10574. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV, Prise KM, Golding J, Mason NJ (2016) Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol 7(1):8. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yao C, Zhang L, Wang J, He Y, Xin J, Wang S et al (2016) Gold nanoparticle mediated phototherapy for cancer. J Nanomater 2016:5497136Google Scholar
  8. 8.
    Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1(1):13–28. CrossRefGoogle Scholar
  9. 9.
    Yang Y, Aw J, Xing B (2017) Nanostructures for NIR light-controlled therapies. Nanoscale 9:3698–3718CrossRefGoogle Scholar
  10. 10.
    Hainfeld JF, Lin L, Slatkin DN, Dilmanian FA, Vadas TM, Smilowitz HM (2014) Gold nanoparticle hyperthermia reduces radiotherapy dose. Nanomedicine 10(8):1609–1617. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317. CrossRefPubMedGoogle Scholar
  12. 12.
    Guo L, Li Y, Xiao Z, Lu W (2014) Photothermal properties of hollow gold nanostructures for cancer theranostics. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer-Verlag, Berlin Heidelberg, pp 1199–1226. CrossRefGoogle Scholar
  13. 13.
    Hleb EY, Lapotko DO (2008) Photothermal properties of gold nanoparticles under exposure to high optical energies. Nanotechnology 19(35):355702. CrossRefPubMedGoogle Scholar
  14. 14.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228. CrossRefPubMedGoogle Scholar
  15. 15.
    Boyer D, Tamarat P, Maali A, Lounis B, Orrit M (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297(5584):1160–1163. CrossRefPubMedGoogle Scholar
  16. 16.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248. CrossRefPubMedGoogle Scholar
  17. 17.
    Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li ZY, Zhang H, Xia Y, Li X (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Khlebtsov B, Zharov V, Melnikov A, Tuchin V, Khlebtsov N (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17(20):5167–5179. CrossRefGoogle Scholar
  19. 19.
    Mackey MA, Ali MRK, Austin LA, Near RD, El-Sayed MA (2014) The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B 118(5):1319–1326. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30(10):1928–1936. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang Z, Wang J, Chen C (2013) Gold nanorods based platforms for light-mediated theranostics. Theranostics 3(3):223–238. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sharma P, Brown SC, Singh A, Iwakuma N, Pyrgiotakis G, Krishna V, Knapik JA, Barr K, Moudgil BM, Grobmyer SR (2010) Near-infrared absorbing and luminescent gold speckled silica nanoparticles for photothermal therapy. J Mater Chem 20(25):5182–5185. CrossRefGoogle Scholar
  23. 23.
    Ayala-Orozco C, Urban C, Knight MW, Urban AS, Neumann O, Bishnoi SW, Mukherjee S, Goodman AM, Charron H, Mitchell T, Shea M, Roy R, Nanda S, Schiff R, Halas NJ, Joshi A (2014) Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano 8(6):6372–6381. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cheng FY, Chen CT, Yeh CS (2009) Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods. Nanotechnology 20(42):425104. CrossRefPubMedGoogle Scholar
  25. 25.
    Wang Y, Black KCL, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu SY, Li M, Kim P, Li ZY, Wang LV, Liu Y, Xia Y (2013) Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7(3):2068–2077. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. CrossRefGoogle Scholar
  27. 27.
    McFarland AD, Haynes CL, Mirkin CA, Van Duyne RP, Godwin HA (2004) Color my nanoworld. J Chem Educ 81:544CrossRefGoogle Scholar
  28. 28.
    Prevo BG, Esakoff SA, Mikhailovsky A, Zasadzinski JA (2008) Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small 4(8):1183–1195. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang Y, Zheng Y, Huang CZ, Xia Y (2013) Synthesis of Ag nanocubes 18–32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility. J Am Chem Soc 135(5):1941–1951. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Khan MAM, Kumar S, Ahamed M, Alrokayan SA, AlSalhi MS (2011) Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res Lett 6(1):434. CrossRefGoogle Scholar
  31. 31.
    Dutta I, Munns CB, Dutta G (1997) An X-ray diffraction (XRD) study of vapor deposited gold thin films on aluminum nitride (AlN) substrates. Thin Solid Films 304(1-2):229–238. CrossRefGoogle Scholar
  32. 32.
    Abdollahi SN, Naderi M, Amoabediny G (2012) Synthesis and physicochemical characterization of tunable silica–gold nanoshells via seed growth method. Colloids Surf A Physicochem Eng Asp 414:345–351. CrossRefGoogle Scholar
  33. 33.
    Lopatynskyi AM, Lopatynska OG, Guo LJ, Chegel VI (2011) Localized surface plasmon resonance biosensor—part I: theoretical study of sensitivity—extended Mie approach. IEEE Sensors J 11(2):361–369. CrossRefGoogle Scholar
  34. 34.
    Lopatynskyi AM, Lytvyn VK, Mogylnyi IV, Rachkov OE, Soldatkin OP, Chegel VI (2016) Smart nanocarriers for drug delivery: controllable LSPR tuning. Semiconductor Physics, Quantum Electronics Optoelectronics 19(4):358–365. CrossRefGoogle Scholar
  35. 35.
    Chegel V, Rachkov O, Lopatynskyi A, Ishihara S, Yanchuk I, Nemoto Y, Hill JP, Ariga K (2012) Gold nanoparticles aggregation: drastic effect of cooperative functionalities in a single molecular conjugate. J Phys Chem C 116(4):2683–2690. CrossRefGoogle Scholar
  36. 36.
    Goodman AM, Cao Y, Urban C, Neumann O, Ayala-Orozco C, Knight MW, Joshi A, Nordlander P, Halas NJ (2014) The surprising in vivo instability of near-IR-absorbing hollow Au–Ag nanoshells. ACS Nano 8(4):3222–3231. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pattani VP, Tunnell JW (2012) Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types. Lasers Surg Med 44(8):675–684. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hembury M, Chiappini C, Bertazzo S, Kalber TL, Drisko GL, Ogunlade O, Walker-Samuel S, Krishna KS, Jumeaux C, Beard P, Kumar CSSR, Porter AE, Lythgoe MF, Boissière C, Sanchez C, Stevens MM (2015) Gold–silica quantum rattles for multimodal imaging and therapy. Proc Natl Acad Sci U S A 112(7):1959–1964. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Xie HN, Larmour IA, Chen YC, Wark AW, Tileli V, McComb DW et al (2013) Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer. Nanoscale 5:765–771CrossRefGoogle Scholar
  40. 40.
    Halas N (2005) Playing with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull 30(05):362–367. CrossRefGoogle Scholar
  41. 41.
    Yeshchenko OA, Bondarchuk IS, Gurin VS, Dmitruk IM, Kotko AV (2013) Temperature dependence of the surface plasmon resonance in gold nanoparticles. Surf Sci 608:275–281. CrossRefGoogle Scholar
  42. 42.
    Yeshchenko OA, Kutsevol NV, Naumenko AP (2016) Light-induced heating of gold nanoparticles in colloidal solution: dependence on detuning from surface plasmon resonance. Plasmonics 11(1):345–350. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • A. M. Lopatynskyi
    • 1
    • 2
    Email author
  • Y. O. Malymon
    • 2
  • V. K. Lytvyn
    • 1
  • I. V. Mogylnyi
    • 1
  • A. E. Rachkov
    • 3
  • A. P. Soldatkin
    • 2
    • 3
  • V. I. Chegel
    • 1
    • 2
  1. 1.Department of Optoelectronic Functional TransducersV. E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of UkraineKyivUkraine
  2. 2.Institute of High TechnologiesTaras Shevchenko Kyiv National UniversityKyivUkraine
  3. 3.Laboratory of Biomolecular ElectronicsInstitute of Molecular Biology and Genetics of National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations