Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1569–1576 | Cite as

Spectrally Tunable Optical Transmission of Titanium Nitride Split Ring Resonators

  • A. Shabani
  • M. Rezaee Roknabadi
  • M. Behdani
  • M. Khazaei Nezhad
Article
  • 138 Downloads

Abstract

In this paper, the optical properties of titanium nitride split ring resonators as an intermetallic metamaterial nanostructure were studied. Our simulation shows the presence of plasmon and LC resonances in the transmission spectrum of a cell consists of four u-shape split ring resonators. The effect of different parameters of resonator such as size, periodic constant, and the material between arms in addition to the polarization of incident beam was examined on the resonance behavior of the system. Also, the optical properties of a cell consist of four complementary split ring resonators within titanium nitride thin film were investigated. An excited mode was observed at λ = 840 nm that was attributed to the plasmon resonance. Changing the arrangement and configuration of the system from C 1v to C 2v symmetry led to the presence of the LC mode beside the plasmon mode in the transmission spectrum. Also, we explored a connection between the complementary split ring resonators and orderly perforated surface plasmon systems. It was determined that a transition occurred from resonator-type to surface plasmon behavior by increasing the size of resonator above 170 nm.

Keywords

Titanium nitride Split ring resonator Complementary split ring resonator Surface plasmon 

References

  1. 1.
    Tabrizi S, Cao Y, Cumming BP, Jia B, Gu M (2016) Functional optical plasmonic resonators fabricated via highly photosensitive direct laser reduction. Adv Opt Mater 4:529–533CrossRefGoogle Scholar
  2. 2.
    Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou JF, Koschny T, Soukoulis CM (2005) Magnetic metamaterials at telecommunication and visible frequencies. Phys Rev Lett 95:203901CrossRefGoogle Scholar
  3. 3.
    Penciu RS, Aydin K, Kafesaki M, Koschny T, Ozbay E, Economou EN, Soukoulis CM (2008) Multi-gap individual and coupled split-ring resonator structures. Opt Express 16:18131–18144CrossRefGoogle Scholar
  4. 4.
    Kishor K, Baitha MN, Sinha RK, Lahiri B (2014) Tunable negative refractive index metamaterial from V-shaped SRR structure: fabrication and characterization. JOSA B 31:1410–1414CrossRefGoogle Scholar
  5. 5.
    Liu Y, Fang N, Wu D, Sun C, Zhang X (2007) Symmetric and antisymmetric modes of electromagnetic resonators. Appl Phys A Mater Sci Process 87:171–174CrossRefGoogle Scholar
  6. 6.
    Shelby R, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79CrossRefGoogle Scholar
  7. 7.
    Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X (2004) Terahertz magnetic response from artificial materials. Science 303:1494–1496CrossRefGoogle Scholar
  8. 8.
    Gao P, Zhang C (2012) Resonant frequency of triangle split resonant rings. Opt Eng 51:018001CrossRefGoogle Scholar
  9. 9.
    Xi S, Chen H, Jiang T, Ran L, Huangfu J, Wu BI, Kong JA, Chen M (2009) Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys Rev Lett 103:194801CrossRefGoogle Scholar
  10. 10.
    Lee SH, Park CM, Seo YM, Kim CK (2010) Reversed Doppler effect in double negative metamaterials. Phys Rev B 81:1102Google Scholar
  11. 11.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969CrossRefGoogle Scholar
  12. 12.
    Engheta N (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317:1698–1702CrossRefGoogle Scholar
  13. 13.
    Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 10:7181–7188CrossRefGoogle Scholar
  14. 14.
    Ghosh S, Bhattacharyya S, Kaiprath Y, Srivastava KV (2014) Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. Appl Phys 115:104503CrossRefGoogle Scholar
  15. 15.
    Zeng Y, Hoyer W, Liu J, Koch SW, Moloney JV (2009) Classical theory for second-harmonic generation from metallic nanoparticles. Phys Rev B 79:235109CrossRefGoogle Scholar
  16. 16.
    Zentgraf T, Meyrath T, Seidel A, Kaiser S, Giessen H, Rockstuhl C, Lederer F (2007) Babinet’s principle for optical frequency metamaterials and nanoantennas. Phys Rev B 76:033407CrossRefGoogle Scholar
  17. 17.
    Corrigan TD, Kolb PW, Sushkov AB, Drew HD, Schmadel DC, Phaneuf RJ (2008) Optical plasmonic resonances in split-ring resonator structures: an improved LC model. Opt Express 16:19850–19864CrossRefGoogle Scholar
  18. 18.
    Withayachumnankul W, Fumeaux C, Abbott D (2010) Compact electric-LC resonators for metamaterials. Opt Express 18:25912CrossRefGoogle Scholar
  19. 19.
    Tobing LYM, Luo Y, Low KS, Zhang D, Zhang DH (2016) Observation of the kinetic inductance limitation for the fundamental magnetic resonance in ultrasmall gold v-shape split ring resonators. Adv Opt Mater 4:1047–1052CrossRefGoogle Scholar
  20. 20.
    Chen J, Mao P, Xu R, Tang C, Liu Y, Wang Q, Zhang L (2015) Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials. Opt Express 23:16238–16245CrossRefGoogle Scholar
  21. 21.
    von Cube F, Irsen S, Niegemann J, Matyssek C, Hergert W, Busch K, Linden S (2011) Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy. Opt Mater Express 1:1009–1018CrossRefGoogle Scholar
  22. 22.
    Mohammadi Z, Van Vlack CP, Hughes S, Bornemann J, Gordon R (2012) Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons. Opt Express 20:15024–15034CrossRefGoogle Scholar
  23. 23.
    Kim J, Jhi S, Lee K (2011) Color of TiN and ZrN from first-principles calculations. Appl Phys 110:083501CrossRefGoogle Scholar
  24. 24.
    Cortie MB, Giddings J, Dowd A (2010) Optical properties and plasmon resonances of titanium nitride nanostructures. Nanotechnology 21:115201CrossRefGoogle Scholar
  25. 25.
    Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A (2012) Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2:478–489CrossRefGoogle Scholar
  26. 26.
    Wang Y, Northwood DO (2007) An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells. Power Source 165:293–298CrossRefGoogle Scholar
  27. 27.
    Recco AAC, Lopez D, Bevilacqua AF, da Silva F, Tschiptschin AP (2007) Improvement of the slurry erosion resistance of an austenitic stainless steel with combinations of surface treatments: nitriding and TiN coating. Surf Coat Technol 202:993–997CrossRefGoogle Scholar
  28. 28.
    Tobing LYM, Tjahjana L, Zhang DH, Zhang Q, Xiong Q (2014) Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum. Adv Opt Mater 2:280–285CrossRefGoogle Scholar
  29. 29.
    Kang B, Choi E, Lee HH, Kim E, Woo J, Kim J, Hong T, Kim J, Wu JW (2010) Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation. Opt Express 18:11552–11561CrossRefGoogle Scholar
  30. 30.
    Min L, Huang L (2015) Perspective on resonances of metamaterials. Opt Express 23:19022CrossRefGoogle Scholar
  31. 31.
    Albishi A, Ramahi OM (2014) Detection of surface and subsurface cracks in metallic and non-metallic materials using a complementary split-ring resonator. Sensors 14:19354–19370CrossRefGoogle Scholar
  32. 32.
    Tobing LYM, Tjahjana L, Zhang DH, Zhang Q, Xiong Q (2013) Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform. Sci Rep 3:2437CrossRefGoogle Scholar
  33. 33.
    Behera G, Ramakrishna SA (2014) Enhanced broadband transmission through structured plasmonic thin films for transparent electrodes. Nano 8:083889Google Scholar
  34. 34.
    Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96:233901CrossRefGoogle Scholar
  35. 35.
    Zhang X, Liu Z, Cai Z, Liu X, Fu G, Liu M (2014) Near-field plasmon effects in extraordinary optical transmission through periodic triangular hole arrays. Opt Eng 53:107108–107108CrossRefGoogle Scholar
  36. 36.
    Shabani A, Rezae Roknabadi M, Behdani M, Kazaei Nezhad M, Rahmani N (2017) Extraordinary optical transmission of periodic array of subwavelength holes within titanium nitride thin film. Nano 11:036006–036006Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • A. Shabani
    • 1
  • M. Rezaee Roknabadi
    • 1
  • M. Behdani
    • 1
  • M. Khazaei Nezhad
    • 1
  1. 1.Department of Physics, School of ScienceFerdowsi University of MashhadMashhadIran

Personalised recommendations