, Volume 13, Issue 5, pp 1507–1511 | Cite as

Simulation of Some Plasmonic Biosensors for Detection of Hemoglobin Concentration in Human Blood

  • V. A. PopescuEmail author


Three recently published plasmonic biosensors based on a birefringent solid-core or a partial-solid-core microstructured optical fiber are simulated for detection of hemoglobin concentration in human blood. For a larger value of the number of holes n h but for the same value of the gold radius, the resonance spectral width and the difference between maximal amplitude sensitivity and resonant wavelengths are decreased, when the refractive index of the analyte is n a = 1.357. Also, the loss and maximum of the amplitude sensitivity are increased in the same conditions. At the resonant wavelength λ = 0.6496 μm for the devices with n h = 14, 17, and 35 holes and n a = 1.357, the hemoglobin concentration is close to the mean value (157.5 g/l) of a man.


Sensors Surface plasmon resonance Finite element method 


  1. 1.
    Popescu VA, Puscas NN, Perrone G (2012) Power absorption efficiency of a new microstructured plasmon optical fiber. J Opt Soc Am B 29(11):3039–3046. CrossRefGoogle Scholar
  2. 2.
    Popescu VA, Puscas NN, Perrone G (2014) Strong power absorption in a new microstructured holey fiber-based plasmonic sensor. J Opt Soc Am B 31(5):1062–1070. CrossRefGoogle Scholar
  3. 3.
    Popescu VA, Puscas NN, Perrone G (2017) Simulation of the sensing performance of a plasmonic biosensor based on birefringent solid-core microstructured optical fiber. Plasmonics 12(3):905–911. CrossRefGoogle Scholar
  4. 4.
    Popescu VA (2016) Application of a plasmonic biosensor for detection of human blood groups. Plasmonics. CrossRefGoogle Scholar
  5. 5.
    Popescu VA 2017 application of a plasmonic biosensor for detection of human-liver tissues. Plasmonics. CrossRefGoogle Scholar
  6. 6.
    Popescu VA, Puscas NN, Perrone G (2017) Plasmonic biosensor based on birefringent partial-solid-core microstructured optical fiber. J Opt 19(7):075004. CrossRefGoogle Scholar
  7. 7.
    Sharma AK, Rajan R, Gupta BD (2007) Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor. Opt Commun 274(2):320–326. CrossRefGoogle Scholar
  8. 8.
    Verma RK, Sharma AK, Gupta BD (2008) Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Opt Commun 281(6):1486–1491. CrossRefGoogle Scholar
  9. 9.
    Ghatak AK, Thyagarajan K (1999) Introduction to fiber optics. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Vial A, Grimault AS, Macías D, Barchiesi D, Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71:085416. CrossRefGoogle Scholar
  11. 11.
    Shalabney A, Abdulhalim I (2012) Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt Lett 37(7):1175–1177. CrossRefPubMedGoogle Scholar
  12. 12.
    Saunders JE, Sanders C, Chen H, Look HP (2016) Refractive indices of common solvents and solutions at 1550 nm. Appl Opt 55(4):947–953. CrossRefPubMedGoogle Scholar
  13. 13.
    Zhernovaya O, Sydoruk O, Tuchin V, Douplik A (2011) The refractive index of human hemoglobin in the visible range. Phys Med Biol 56(13):4013–4021. CrossRefPubMedGoogle Scholar
  14. 14.
    Sharma AK (2013) Plasmonic biosensor for detection of hemoglobin concentration in human blood: Design considerations. J Appl Phys 114(4):044701. CrossRefGoogle Scholar
  15. 15.
    Sharma AK (2015) Model of a plasmonic phase interrogation probe for optical sensing of hemoglobin in blood samples. Sens Imaging 16(1):12. CrossRefGoogle Scholar
  16. 16.
    Prahl S 1999 Optical absorption of hemoglobin.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations