, Volume 13, Issue 4, pp 1491–1497 | Cite as

Supershape Nanoparticle Plasmons

  • F. BabaeiEmail author
  • M. Javidnasab
  • A. Rezaei


In this work, we proposed new shape nanoparticles in the name of supershape nanoparticles by manipulation in the morphology of a disk nanoparticle. The electric field distribution of supershape nanoparticles was investigated at resonance wavelength of particle plasmons. The effects of dispersed medium and different sensory materials on particle plasmons were reported. The obtained results showed that there exist the multiple plasmonics modes in supershape nanoparticles. We found that the high sensitivity factor is available in the supershape nanoparticles. This study can be a base for the characterization of multiple particle plasmons in plasmonic devices for sensing applications.


Plasmons Nanoparticles Sensing 



This work was carried out with the support of the University of Qom and University of Tabriz.


  1. 1.
    Robbie K, Brett MJ (1997) Sculptured thin films and glancing angle deposition: growth mechanics and applications. J Vac Sci Technol A 15:1460CrossRefGoogle Scholar
  2. 2.
    Horn MW, Pickett MD, Messier R, Lakhtakia A (2004) Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures. Nanotechnology 15:303CrossRefGoogle Scholar
  3. 3.
    Messier R, Gehrke T, Frankel C, Venugopal VC, Otano W, Lakhtakia A (1997) Engineered sculptured nematic thin films. J Vac Sci Technol A 15:2148CrossRefGoogle Scholar
  4. 4.
    Toader O, John S (2001) Proposed square spiral microfabrication architecture for large threedimensional photonic band gap crystals. Science 292:1133CrossRefPubMedGoogle Scholar
  5. 5.
    Kennedy SR, Brett MJ, Toader O, John S (2002) Fabrication of tetragonal square spiral photonic crystals. Nano Lett 2:59CrossRefGoogle Scholar
  6. 6.
    Juodkazis S, Rosa L, Bauerdick S, Peto L, El-Ganainy R, John S (2011) Sculpturing of photonic crystals by ion beam lithography: towards complete photonic bandgap at visible wavelengths. Opt Exp 19:5802CrossRefGoogle Scholar
  7. 7.
    Santhanam V, Andres RP (2004) Microcontact printing of uniform nanoparticle arrays. Nano Lett 4:41CrossRefGoogle Scholar
  8. 8.
    Ko SH, Park I, Pan H, Grigoropoulos CP, Pisano AP, Luscombe CK, Frechet| JMJ (2007) Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett 7:1869Google Scholar
  9. 9.
    Kraus T, Malaquin L, Schmid H, Riess W, Spencer ND, Wolf H (2007) Nanoparticle printing with singleparticle resolution. Nat Nanotechnol 2:570CrossRefPubMedGoogle Scholar
  10. 10.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275:1102CrossRefPubMedGoogle Scholar
  11. 11.
    Jia HW, Wang WQ, Qiu L, Zhang NN, Ge HH, Wang J (2015) Fabricating a long-range ordered 3D bimetallic nanoassembly with edge-on substrate for highly sensitive SERS sensing of escherichia coli bacteria. Plasmonics 10:1889CrossRefGoogle Scholar
  12. 12.
    Abbas A, Fei M, Tian L, Singamaneni S (2013) Trapping proteins within gold nanoparticle assemblies: dynamically tunable hot-spots for nanobiosensing. Plasmonics 8:537CrossRefGoogle Scholar
  13. 13.
    Fritzsche W, Taton TA (2003) Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 14:R63CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang D, Yan Y, Cheng W, Zhang W, Li Y, Ju H, Ding S (2013) Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA. Microchim Acta 180:397CrossRefGoogle Scholar
  15. 15.
    Takemura K, Adegoke O, Takahashi N, Kato T, Li T-C, Kitamoto N, Tanaka T, Suzuki T, Park EY (2017) Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. Biosens Bioelectron 89:998CrossRefPubMedGoogle Scholar
  16. 16.
    Karlsson R, Stahlberg R (1995) Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities. Anal Biochem 228:274CrossRefPubMedGoogle Scholar
  17. 17.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462CrossRefPubMedGoogle Scholar
  18. 18.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189CrossRefPubMedGoogle Scholar
  19. 19.
    Azarian A, Babaei F (2016) Localized surface plasmons in face to face dimer silver triangular prism nanoparticles. J Appl Phy 119:203103CrossRefGoogle Scholar
  20. 20.
    Bordley JA, Hooshmand N, El-Sayed MA (2015) The coupling between gold or silver nanocubes in their homo-dimers: a new coupling mechanism at short separation distances. Nano Lett 15:3391CrossRefPubMedGoogle Scholar
  21. 21.
    Nelayah J, Kociak M, Stéphan O, Javier García de Abajo F, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán LM, Colliex C (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3:348CrossRefGoogle Scholar
  22. 22.
    Kim D-S, Heo J, Ahn S-H, Woo Han S, Soo Yun W, Hwan Kim Z (2009) Real-space mapping of the strongly coupled plasmons of nanoparticle dimers. Nano Lett 9:3619CrossRefPubMedGoogle Scholar
  23. 23.
    Mackay TG, Polo JA Jr, Lakhtakia A (2013) Electromagnetic surface waves: a modern perspective. Elsevier, WalthamGoogle Scholar
  24. 24.
    Sarid D, Challener WA (2010) Modern introduction to surface plasmons: theory, mathematica modeling and applications. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Swiontek SE, Pulsifer DP, Lakhtakia A (2013) Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform. Sci Rep 3:1409CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mackay TG, Lakhtakia A (2012) Modeling chiral sculptured thin films as platforms for surfaceplasmonic-polaritonic optical sensing. IEEE Sensors J 12:273CrossRefGoogle Scholar
  27. 27.
    Faryad M, Lakhtakia A (2011) Propagation of surface waves and waveguide modes guided by a dielectric slab inserted in a sculptured nematic thin film. Phys Rev A 83:013814CrossRefGoogle Scholar
  28. 28.
    Gielis J (2003) A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am J Bot 90:333CrossRefPubMedGoogle Scholar
  29. 29.
    Rodríguez-Oliveros R, Sánchez-Gil JA (2011) Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces. Opt Exp 19:12208CrossRefGoogle Scholar
  30. 30.
    Tassadit A, Macías D, Sánchez-Gil JA, Adam P-M, Rodriguez-Olivero R (2011) Metal nanostars: stochastic optimization of resonant scattering properties. Superlattice Microst 49:288CrossRefGoogle Scholar
  31. 31.
    Macías D, Adam P-M, Ruíz-Cortés V, Rodríguez-Oliveros R, Sánchez-Gil JA (2012) Heuristic optimization for the design of plasmonic nanowires with specific resonant and scattering properties. Opt Exp 20:13146CrossRefGoogle Scholar
  32. 32.
    Forestiere C, He Y, Wang R, Kirby RM, Negro LD (2016) Inverse design of metal nanoparticles’ morphology. ACS Photonics 3:68CrossRefGoogle Scholar
  33. 33.
    Palkar SA, Ryde NP, Schure MR, Gupta N, Cole JB (1998) Finite difference time domain computation of light scattering by multiple colloidal particles. Langmuir 14:3484CrossRefGoogle Scholar
  34. 34.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  35. 35.
    Gielis J (2017) The geometrical beauty of plants. Atlantis Press, ParisGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of QomQomIran
  2. 2.Faculty of PhysicsUniversity of TabrizTabrizIran
  3. 3.Faculty of Chemical and Petroleum EngineeringUniversity of TabrizTabrizIran

Personalised recommendations